在數(shù)列{an}中,若點(diǎn)(n,an)在經(jīng)過點(diǎn)(5,3)的定直線l上,則數(shù)列{an}的前9項和S9=
 
分析:根據(jù)點(diǎn)(n,an)在定直線l上得到數(shù)列為等差數(shù)列,設(shè)出等差數(shù)列的通項,把(5,3)代入即可求出a5的值,根據(jù)等差數(shù)列的前n項和的公式及性質(zhì)即可求出S9的值.
解答:解:∵點(diǎn)(n,an)在定直線l上,
∴數(shù)列{an}為等差數(shù)列.
∴an=a1+(n-1)•d.
將(5,3)代入,得3=a1+4d=a5
∴S9=
9
2
(a1+a9)
=9a5=3×9=27.
點(diǎn)評:本題以點(diǎn)與直線的位置關(guān)系為平臺,考查等差數(shù)列的通項公式及前n項和的公式,同時要求學(xué)生掌握等差數(shù)列的性質(zhì).是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=
1
2
,an=
1
1-an-1
(n≥2,n∈N*),則a2010等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對“等方差數(shù)列”的判斷;
①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
②{(-1)n}是等方差數(shù)列;
③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
其中正確命題序號為( 。
A、①②③B、①②④C、①②③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=2,an=
1
1-an-1
(n≥2,n∈N*),則a7
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=2,a2=6,且當(dāng)n∈N*時,an+2是an•an+1的個位數(shù)字,則a2011=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}具有如下性質(zhì):①a1為正整數(shù);②對于任意的正整數(shù)n,當(dāng)an為偶數(shù)時,an+1=
a n
2
;當(dāng)an為奇數(shù)時,an+1=
an+1
2
.在數(shù)列{an}中,若當(dāng)n≥k時,an=1,當(dāng)1≤n<k時,an>1(k≥2,k∈N*),則首項a1可取數(shù)值的個數(shù)為
 
(用k表示).

查看答案和解析>>

同步練習(xí)冊答案