已知點A(x0,y0)為拋物線y2=8x上的一點,F(xiàn)為該拋物線的焦點,若|AF|=6,則x0的值為


  1. A.
    4
  2. B.
    4數(shù)學(xué)公式
  3. C.
    8
  4. D.
    8數(shù)學(xué)公式
A
分析:首先過A作出拋物線的垂線AQ,根據(jù)拋物線的定義得出AQ=AF=6,再根據(jù)AQ是平行于x軸的線段,可得AQ=x0+2=6,由此得出點A的橫坐標(biāo)x0
解答:解:作出拋物線y2=4x準(zhǔn)線l:x=-2,過A作l的垂線,垂足為Q,連接AF
根據(jù)拋物線的定義得:AQ=AF=6
∴AQ=x0+2=6
因此A的橫坐標(biāo)x0=4.
故選A.
點評:本題考查了拋物線的定義與簡單性質(zhì),屬于容易題.利用圓錐曲線的原始定義解決一些計算,是近幾年?嫉闹R點,請同學(xué)們注意這一特點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(x0,y0)為拋物線y2=8x上的一點,F(xiàn)為該拋物線的焦點,若|AF|=6,則x0的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x0,y0)和點A(2,3)在直線l:x+4y-6=0的異側(cè),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數(shù))
上任意一點,F(xiàn)2為雙曲線的右焦點,過P1作右準(zhǔn)線的垂線,垂足為A,連接F2A并延長交y軸于點P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)是否存在過點F2的直線l,使直線l與(1)中軌跡在y軸右側(cè)交于R1、R2兩不同點,且滿足
OR1
OR2
=4b2
,(O為坐標(biāo)原點),若存在,求直線l的方程;若不存在,請說明理由;
(3)設(shè)(1)中軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點,求證:以MN為直徑的圓恒過兩個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江一模)如圖,已知點M0(x0,y0)是橢圓C:
y2
2
+x2
=1上的動點,以M0為切點的切線l0與直線y=2相交于點P.
(1)過點M0且l0與垂直的直線為l1,求l1與y軸交點縱坐標(biāo)的取值范圍;
(2)在y軸上是否存在定點T,使得以PM0為直徑的圓恒過點T?若存在,求出點T的坐標(biāo);若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓
y2
a2
+
x2
b2
=1(a>b>0)
,則以Q為切點的橢圓的切線方程是:
y1y
a2
+
x1x
b2
=1(a>b>0)

查看答案和解析>>

同步練習(xí)冊答案