(2012•黃浦區(qū)二模)已知△FAB,點(diǎn)F的坐標(biāo)為(1,0),點(diǎn)A、B分別在圖中拋物線y2=4x及圓(x-1)2+y2=4的實線部分上運(yùn)動,且AB總是平行于x軸,那么△FAB的周長的取值范圍為
(4,6)
(4,6)
分析:由拋物線定義可得|AF|=xA+1,從而△FAB的周長=|AF|+|AB|+|BF|=xA+1+(xB-xA)+2=3+xB,確定B點(diǎn)橫坐標(biāo)的范圍,即可得到結(jié)論.
解答:解:拋物線的準(zhǔn)線l:x=-1,焦點(diǎn)F(1,0),由拋物線定義可得|AF|=xA+1,
∴△FAB的周長=|AF|+|AB|+|BF|=xA+1+(xB-xA)+2=3+xB
由拋物線y2=4x及圓(x-1)2+y2=4可得交點(diǎn)的橫坐標(biāo)為1
∴xB∈(1,3)
∴3+xB∈(4,6)
故答案為:(4,6)
點(diǎn)評:本題考查拋物線的定義,考查拋物線與圓的位置關(guān)系,確定B點(diǎn)橫坐標(biāo)的范圍是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,則cos2α=
63
65
63
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點(diǎn),試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點(diǎn),C1是圓柱上底面弧A1B1的中點(diǎn),那么異面直線AC1與BC所成角的正切值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知函數(shù)f(x)=|x2-2ax+a|(x∈R),給出下列四個命題:
①當(dāng)且僅當(dāng)a=0時,f(x)是偶函數(shù);
②函數(shù)f(x)一定存在零點(diǎn);
③函數(shù)在區(qū)間(-∞,a]上單調(diào)遞減;
④當(dāng)0<a<1時,函數(shù)f(x)的最小值為a-a2
那么所有真命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)函數(shù)f(x)=log
1
2
(2x+1)
的定義域為
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案