已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤f(
π
6
),對(duì)x∈R恒成立,且f(
π
2
)<f(π),則f(x)的單調(diào)遞增區(qū)間是( 。
A、[kπ-
π
3
,kπ+
π
6
],k∈Z
B、[kπ,kπ+
π
2
],k∈Z
C、[kπ+
π
6
,kπ+
3
],k∈Z
D、[kπ-
π
2
,kπ],k∈Z
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先根據(jù)已知條件求出函數(shù)的解析式,進(jìn)一步利用整體思想求出函數(shù)的單調(diào)區(qū)間.
解答: 解:函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤f(
π
6
),對(duì)x∈R恒成立,
則:2•
π
6
+φ=2kπ+
π
2

φ=2kπ+
π
6

由于:且f(
π
2
)<f(π)
所以:φ=
π
6

即:f(x)=sin(2x+
π
6
),
令:2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)
解得:kπ-
π
3
≤x≤kπ+
π
6

故選:A
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):三角函數(shù)解析式的確定,函數(shù)的單調(diào)區(qū)間的確定,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是第二象限角,sinα=
3
5
,則
1-cos2α
1+cos2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非零向量
OA
,
OB
,
OC
滿足:
OA
OB
OC
(α,β∈R),給出下列命題:
①若α=
3
2
,β=-
1
2
,則A、B、C三點(diǎn)共線;
②若α>0,β>0,
OA
|=
3
,
OB
 | =| 
OC
|=1
,
OB
,
OC
>=
3
,
OA
,
OB
>=
π
2
,則α+β=3;
③已知等差數(shù)列{an}中,an>an+1>0(n∈N*),a2=α,a2009=β,若A、B、C三點(diǎn)共線,但O點(diǎn)不在直線BC上,則
1
a3
+
4
a2008
的最小值為9;
④若β≠0,且A、B、C三點(diǎn)共線,則A分
BC
所成的比λ一定為
α
β

其中你認(rèn)為正確的所有命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C中心在原點(diǎn)O,焦點(diǎn)在x軸上,其長(zhǎng)軸長(zhǎng)為焦距的2倍,且過(guò)點(diǎn)M(1,
3
2
).
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若斜率為1的直L與橢圓交于不同兩點(diǎn)A.B,求△AOB面積的最大值及此時(shí)直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
OP
=(cosθ,sinθ),其中0≤θ≤
π
2
,
OQ
=(
3
,1)
(1)若|
PQ
|=
5
,求tanθ的值;
(2)求△POQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD-A1B1C1D1是正方體,E、F分別是AD、DD1的中點(diǎn),則面EFC1B和面BCC1所成二面角的正切值等于(  )
A、2
2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(ax-
1
x
)6
的展開(kāi)式中常數(shù)項(xiàng)的系數(shù)為60,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形P1DCB中,P1D∥BC,CD⊥P1D且P1D=6,BC=3,DC=
6
,A是P1D的中點(diǎn),沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°,設(shè)E、F分別為線段AB、PD的中點(diǎn).
(1)求證:AF∥面PEC;
(2)求PC與底面ABCD所成角的正弦值;
(3)求D到面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0且a≠1,則“函數(shù)f(x)=ax在x上是減函數(shù)”,是“函數(shù)g(x)=(2-a)x3在R上是增函數(shù)”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案