精英家教網(wǎng)如圖,ABCD是一塊矩形鐵板AB=48cm,BC=30cm,剪掉四個陰影部分的小正方形,沿虛線折疊后,焊接成一個無蓋的長方體水箱.
(Ⅰ)寫出水箱的容積V與水箱高度x的函數(shù)表達式,并求其定義域;
(Ⅱ)當水箱高度x為何值時,水箱的容積V最大,并求出其最大值.
分析:(1)由圖形據(jù)體積公式得出體積關于高x的函數(shù),再由題意中的限制條件得出定義域.
(2)先求導,列表,確定函數(shù)的單調(diào)性,即可求出最值.
解答:解:(Ⅰ)由題意,設高為x,則V=(48-2x)(30-2x)x=4(360x-39x2+x3)(0<x<15).
(Ⅱ)∵V=4(360x-39x2+x3),
∴V′=4(3x2-78x+360),
令V′=0,即3x2-78x+360=0,
解得,x=6或x=20(舍).
當x變化時,V′,V的變化情況如下表:
x (0,6) 6 (6,15)
V′ + 0 -
V 最大值
由上表可知,當x=6cn時,容積V有最大值,且最大值為3888立方厘米.
點評:本題考查長方體的體積公式以及用導數(shù)數(shù)求最值的過程,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD是一塊邊長為100m的正方形地皮,其中AST是半徑為90m的扇形小山,其余部分都是平地,一開發(fā)商想在平地上建一個矩形的停車場,使矩形的一個頂點P在圓弧ST上,相鄰兩邊CQ,CR落在正方形的BC,CD邊上,求矩形停車場PQCR面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨著機動車數(shù)量的增加,對停車場所的需求越來越大,如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一座半徑為90米的扇形小山,P是弧TS上一點,其余部分都是平地,現(xiàn)一開發(fā)商想在平地上建一個邊落在BC和CD上的長方形停車場PQCR.
(1)設∠PAB=θ,試寫出停車場PQCR的面積S與θ的函數(shù)關系式;
(2)求長方形停車場PQCR面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一半徑為80米的扇形小山,P是弧TS上一點,其余部分都是平地.現(xiàn)一開發(fā)商想在平地上建造一個有邊落在BC與CD上的長方形停車場PQCR.設∠PAT為θ,長方形停車場面積為S.
(1)試寫出S關于θ的函數(shù);
(2)求長方形停車場面積S的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•黃埔區(qū)一模)如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一半徑為90米的底面為扇形小山(P為
TS
上的點),其余部分為平地.今有開發(fā)商想在平地上建一個邊落在BC及CD上的長方形停車場PQCR.求長方形停車場PQCR面積的最大值及最小值.

查看答案和解析>>

同步練習冊答案