已知f(x)=
4+
1
x2
,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(an,
1
an+1
)(n∈N*)在曲線y=f(x)上,且a1=1,an>0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}的首項(xiàng)b1=1,前n項(xiàng)和為Tn,且
Tn+1
an2
=
Tn
an+12
+16n2-8n-3
,求數(shù)列{bn}的通項(xiàng)公式bn
(1)由題意知
1
an+1
=
4+
1
an2

1
an+12
=4+
1
an2

1
an+12
-
1
an2
=4
,即{
1
an2
}是等差數(shù)列.
1
an2
=
1
a12
+4(n-1)=1+4n-4=4n-3.
an2=
1
4n-3

又∵an>0,
an=
1
4n-3

(2)由題設(shè)知(4n-3)Tn+1=(4n+1)Tn+(4n+1)(4n-3).
Tn+1
4n+1
-
Tn
4n-3
=1

設(shè)
Tn
4n-3
=cn
,則上式變?yōu)閏n+1-cn=1.
∴{cn}是等差數(shù)列.
∴cn=c1+n-1=
T1
1
+n-1=b1+n-1=n.
Tn
4n-3
=n
,即Tn=n(4n-3)=4n2-3n.
∴當(dāng)n=1時(shí),bn=T1=1;
當(dāng)n≥2時(shí),bn=Tn-Tn-1=4n2-3n-4(n-1)2+3(n-1)=8n-7.
經(jīng)驗(yàn)證n=1時(shí)也適合上式.
∴bn=8n-7(n∈N*).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
2x-1  ,(x≥2)
-x2+3x ,(x<2)
,則f(-1)+f(4)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山二模)已知f(x)=-
4+
1
x2
,點(diǎn)Pn(an,-
1
an+1
)
在曲線y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求證:數(shù)列{
1
a
2
n
}
為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
a
2
n
a
2
n+1
}
的前n項(xiàng)和為Sn,若對(duì)于任意的n∈N*,存在正整數(shù)t,使得Snt2-t-
1
2
恒成立,求最小正整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(x+
π
4
)=
1+tanx
1-tanx
(x≠kπ+
π
4
)
,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且f(x+π)=
1+f(x)
1-f(x)
,那么函數(shù)y=f(x)的周期是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
4•2010x+2
2010x+1
+xcosx(-1≤x≤1)
,設(shè)函數(shù)f(x)的最大值是M,最小值是N,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-
4+
1
x2
,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(an,-
1
an+1
)
在曲線y=f(x)上(n∈N*),且a1=1,an>0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn]的前n項(xiàng)和為Tn,且滿足
Tn+1
an2
=
Tn
an+12
+16n2-8n-3
,b1=1,求證:數(shù)列{
Tn
4n-3
}
是等差數(shù)列,并求數(shù)列{bn]的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案