已知函數(shù)f(x)=x-,求證:函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).
分析:先在區(qū)間(0,+∞)上任取兩個值x1,x2,并設它們的大小,然后作差比較f(x1)與f(x2)的大小,即可正用函數(shù)單調性的定義證明函數(shù)的單調性. 解:任取x1>x2>0, 則f(x1)-f(x2)=
所以f(x1)-f(x2)>0,即f(x1)>f(x2). 故函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù). 點評:正用函數(shù)單調性的定義證明函數(shù)的單調性,一般步驟為:設(設區(qū)間內的任意兩個值x1,x2及x1與x2的大小)→變(對f(x1)-f(x2)進行變形,直至能直接確定其符號為止)→比(比較f(x1)與f(x2)的大小)→判(判定單調性).其中變形是難點(參看4版《函數(shù)單調性 變形小技巧》).正用函數(shù)單調性的定義證明或判斷函數(shù)的單調性時,一定要注意考察f(x1)-f(x2)在給定區(qū)間上的符號是否恒定. |
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求實數(shù)m的值;
(2)作出函數(shù)f(x)的圖像;
(3)根據(jù)圖像指出f(x)的單調遞減區(qū)間;
(4)根據(jù)圖像寫出不等式f(x)>0的解集;
(5)求當x∈[1,5)時函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源:新課標高三數(shù)學對數(shù)與對數(shù)函數(shù)、反比例函數(shù)與冪函數(shù)專項訓練(河北) 題型:解答題
已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關于x的方程f(x)-g(x)=0的一個解,求t的值;
(2)當0<a<1時,不等式f(x)≥g(x)恒成立,求t的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高二下學期第二次月考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當a=0時,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆新課標高三配套第四次月考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;
(3)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com