【題目】已知函數(shù).
(1)若對(duì)恒成立,求的取值集合;
(2)在函數(shù)的圖像上取定點(diǎn),記直線AB的斜率為K,證明:存在,使恒成立;
【答案】(1);(2)見(jiàn)解析
【解析】
(1)對(duì)一切x>0,f(x)≤恒成立,即對(duì)一切x>0,恒成立,構(gòu)造新函數(shù),求出函數(shù)的最值,即可求得結(jié)論;
(2)要證明存在x0∈(x1,x2),使f′(x0)=k成立,只要證明f′(x)﹣k=0在(x1,x2)內(nèi)有解即可.
(1)解:對(duì)一切x>0,f(x)≤恒成立,
即對(duì)一切x>0,恒成立,
令,則
令g′(x)>0,可得0<x<;令g′(x)<0,可得x>,
∴x=時(shí),g(x)取得最大值g()
∴;
令,,
在上單調(diào)遞減,在在上單調(diào)遞增,
∴,又,
∴
∴的取值集合;
(2)證明:由題意,k
要證明存在x0∈(x1,x2),使f′(x0)=k成立,只要證明f′(x)﹣k=0在(x1,x2)內(nèi)有解即可
令h(x)=f′(x)﹣k,只要證明h(x)在(x1,x2)內(nèi)存在零點(diǎn)即可
∵h(x)在(x1,x2)內(nèi)是減函數(shù),只要證明h(x1)>0,h(x2)<0
即證0,0
令F(t)=t﹣1﹣lnt(t>0),∵F′(t)=1,∴函數(shù)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增
∴函數(shù)在t=1時(shí),取得最小值0,∴F(t)≥0
∵0且;0且1
∴0,0
∴結(jié)論成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有如下問(wèn)題:今有蒲生一日,長(zhǎng)四尺,莞生一日,長(zhǎng)一尺.蒲生日自半,莞生日自倍.意思是:今有蒲第一天長(zhǎng)高四尺,莞第一天長(zhǎng)高一尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的兩倍.請(qǐng)問(wèn)第幾天,莞的長(zhǎng)度是蒲的長(zhǎng)度的4倍( )
A.4天B.5天C.6天D.7天
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)已知函數(shù)在時(shí)總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)就一直使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開(kāi)始,“地支”以“子”字開(kāi)始,兩者按照干支順序相配,構(gòu)成了“干支紀(jì)年法”,其相配順序?yàn)椋杭鬃、乙丑、丙?/span>癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個(gè)周期,周而復(fù)始,循環(huán)記錄.按照“干支紀(jì)年法”,中華人民共和國(guó)成立的那年為己丑年,則2013年為( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì)任意,恒成立,求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形的半徑為,圓心角,點(diǎn)為弧上一點(diǎn),平面且,點(diǎn)且,∥平面.
(1)求證:平面平面;
(2)求平面和平面所成二面角的正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給正有理數(shù)、(,,,且和不同時(shí)成立),按以下規(guī)則排列:① 若,則排在前面;② 若,且,則排在的前面,按此規(guī)則排列得到數(shù)列.
(例如:).
(1)依次寫出數(shù)列的前10項(xiàng);
(2)對(duì)數(shù)列中小于1的各項(xiàng),按以下規(guī)則排列:①各項(xiàng)不做化簡(jiǎn)運(yùn)算;②分母小的項(xiàng)排在前面;③分母相同的兩項(xiàng),分子小的項(xiàng)排在前面,得到數(shù)列,求數(shù)列的前10項(xiàng)的和,前2019項(xiàng)的和;
(3)對(duì)數(shù)列中所有整數(shù)項(xiàng),由小到大取前2019個(gè)互不相等的整數(shù)項(xiàng)構(gòu)成集合,的子集滿足:對(duì)任意的,有,求集合中元素個(gè)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)擁有3條相同的生產(chǎn)線,每條生產(chǎn)線每月至多出現(xiàn)一次故障.各條生產(chǎn)線是否出現(xiàn)故障相互獨(dú)立,且出現(xiàn)故障的概率為.
(1)求該企業(yè)每月有且只有1條生產(chǎn)線出現(xiàn)故障的概率;
(2)為提高生產(chǎn)效益,該企業(yè)決定招聘名維修工人及時(shí)對(duì)出現(xiàn)故障的生產(chǎn)線進(jìn)行維修.已知每名維修工人每月只有及時(shí)維修1條生產(chǎn)線的能力,且每月固定工資為1萬(wàn)元.此外,統(tǒng)計(jì)表明,每月在不出故障的情況下,每條生產(chǎn)線創(chuàng)造12萬(wàn)元的利潤(rùn);如果出現(xiàn)故障能及時(shí)維修,每條生產(chǎn)線創(chuàng)造8萬(wàn)元的利潤(rùn);如果出現(xiàn)故障不能及時(shí)維修,該生產(chǎn)線將不創(chuàng)造利潤(rùn),以該企業(yè)每月實(shí)際獲利的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?(實(shí)際獲利=生產(chǎn)線創(chuàng)造利潤(rùn)-維修工人工資)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com