設(shè)二次函數(shù)f(x)=(k-4)x2+kx(k∈R),對(duì)任意實(shí)數(shù)x,f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)已知,求:
【答案】分析:(1)只需二次項(xiàng)的系數(shù)為0,△≤0即可求出k的值,從而確定f(x),進(jìn)而確定值域.
(2)當(dāng)成立,可以證明an+1-an>0,本題答案不唯一.
(3)由(2)得出,,設(shè),得,,進(jìn)而求出的值.
解答:解:(1)由f(x)≤6x+2恒成立等價(jià)于(k-4)x2+(k-6)x-2≤0恒成立,(1分)
從而得:,化簡(jiǎn)得,從而得k=2,所以f(x)=-2x2+2x,(3分)
其值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182121870196930/SYS201310241821218701969022_DA/8.png">.(4分)
(2)解:當(dāng)時(shí),數(shù)列an在這個(gè)區(qū)間上是遞增數(shù)列,證明如下:
設(shè),則,所以對(duì)一切n∈N*,均有;(7分)
從而得an+1-an>0,即an+1>an,所以數(shù)列an在區(qū)間上是遞增數(shù)列.(10分)
注:本題的區(qū)間也可以是、、等無(wú)窮多個(gè).
另解:若數(shù)列an在某個(gè)區(qū)間上是遞增數(shù)列,則an+1-an>0
即an+1-an=f(an)-an=-2an2+2an-an=-2an2+an>0(7分)
又當(dāng)時(shí),,所以對(duì)一切n∈N*,均有且an+1-an>0,所以數(shù)列an在區(qū)間上是遞增數(shù)列.(10分)
(3)(文科)由(2)知,從而;,即;(12分)
,則有bn+1=2bn2;
從而有l(wèi)gbn+1=2lgbn+lg2,可得lgbn+1+lg2=2(lgbn+lg2),
所以數(shù)列l(wèi)gbn+lg2是以為首項(xiàng),公比為2的等比數(shù)列,(14分)
從而得,即,所以
所以,所以,(16分)
所以,=.(18分)
點(diǎn)評(píng):本題是數(shù)列與函數(shù)的綜合題,考查了函數(shù)的值域,數(shù)列的化簡(jiǎn)與求和,是綜合性題目,對(duì)基本方法和靈活運(yùn)用要求比較高,屬于高檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿足f(-1)=0,對(duì)于任意的實(shí)數(shù)x都有f(x)-x≥0,并且當(dāng)x∈(0,2)時(shí),f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當(dāng)x∈(-1,1)時(shí),函數(shù)g(x)=f(x)-mx,m∈R是單調(diào)的,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個(gè)根x1、x2滿足0<x1<x2
1
a
,且函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,則有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個(gè)零點(diǎn),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足:當(dāng)x=1時(shí),f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實(shí)數(shù)m,n,使x∈[m,n]時(shí),函數(shù)的值域也是[m,n]?若存在,則求出這樣的實(shí)數(shù)m,n;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案