【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(a+c)2=b2+3ac
(Ⅰ)求角B的大;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.
【答案】解:(Ⅰ) 把(a+c)2=b2+3ac整理得,a2+c2﹣b2=ac,
由余弦定理有cosB= = = ,
∵B為三角形內(nèi)角,
∴B= ;
(Ⅱ)在△ABC中,A+B+C=π,即B=π﹣(A+C),
∴sinB=sin(A+C),
由已知sinB+sin(C﹣A)=2sin2A可得:sin(A+C)+sin(C﹣A)=4sinAcosA,
∴sinAcosC+cosAsinC+sinCcosA﹣cosCsinA=4sinAcosA,
整理得:cosAsinC=2sinAcosA,
若cosA=0,則A= ,于是由b=2,可得c= = ,
此時(shí)△ABC的面積為S= bc= ;
若cosA≠0,則sinC=2sinA,由正弦定理可知,c=2a,
代入a2+c2﹣b2=ac整理可得:3a2=4,
解得:a= ,進(jìn)而c= ,
此時(shí)△ABC的面積S= acsinB= ,
∴綜上所述,△ABC的面積為 .
【解析】(1)把(a+c)2=b2+3ac整理得,a2+c2﹣b2=ac,根據(jù)余弦定理可得cosB的值,不難得出B的角度,(2)由三角形三內(nèi)角和為π,可得sinB=sin(A+C),由已知sinB+sin(C﹣A)=2sin2A可得:sin(A+C)+sin(C﹣A)=4sinAcosA,根據(jù)兩角和與差的正弦公式進(jìn)行整理得:cosAsinC=2sinAcosA,分類(lèi)討論當(dāng)cosA=0和cosA≠0分別求得△ABC的面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:,以及對(duì)余弦定理的定義的理解,了解余弦定理:;;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若a=0時(shí),求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣f'(0)ex+2x,點(diǎn)P為曲線y=f(x)在點(diǎn)(0,f(0))處的切線l上的一點(diǎn),點(diǎn)Q在曲線y=ex上,則|PQ|的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游公司為甲,乙兩個(gè)旅游團(tuán)提供四條不同的旅游線路,每個(gè)旅游團(tuán)可任選其中一條旅游線路.
(1)求甲、乙兩個(gè)旅游團(tuán)所選旅游線路不同的概率;
(2)某天上午9時(shí)至10時(shí),甲,乙兩個(gè)旅游團(tuán)都到同一個(gè)著名景點(diǎn)游覽,20分鐘后游覽結(jié)束即離去.求兩個(gè)旅游團(tuán)在該著名景點(diǎn)相遇的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由;
(3)求證:當(dāng)x∈(0,e]時(shí),e2x2﹣ x>(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+Dx+Ey+3=0,圓心在直線x+y﹣1=0上,且圓心在第二象限,半徑長(zhǎng)為 ,求圓的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2﹣12x﹣14y+60=0及其上的一點(diǎn)A(2,4).
(Ⅰ)是否存在直線l:y=kx+3與圓M有兩個(gè)交點(diǎn)B,C,并且|AB|=|AC|,若有,求此直線方程,若沒(méi)有,請(qǐng)說(shuō)明理由;
(Ⅱ)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得 = ,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,內(nèi)角A,B,C依次成等差數(shù)列,其對(duì)邊分別為a,b,c,且b= asinB.
(1)求內(nèi)角C;
(2)若b=2,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com