已知函數(shù)f(x)=
2x-1
2x+1

(1)判斷f(x)的奇偶性,并加以證明;
(2)判斷f(x)的單調(diào)性,并加以證明;
(3)求f(x)的值域;
(4)解不等式f(x)>
7
9
分析:(1)用定義判斷函數(shù)的奇偶性.其步驟為先判斷定義域的對稱性,再判斷f(x)與f(-x)的關系,另外注意本題書寫的格式---先判斷后證明.
(2)用定義判斷函數(shù)的單調(diào)性,其步驟是任取兩個自變量,對其函數(shù)值作差,判斷其符號,得出單調(diào)性結論,注意本題書寫的格式---先判斷后證明.
(3)由(2)的結論求值域,求此類函數(shù)的值域時,注意到分子與分母是齊次式,故一般采取先分離常數(shù),求值域.
(4)利用單調(diào)性解不等式,本題為增函數(shù),故找出函數(shù)值為
7
9
的自變量,即可求出其解集.此為解不等式的一類常用方法.
解答:解:(1)f(x)為奇函數(shù).
因為f(x)的定義域為R,對?x∈R
f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-f(x)
,
∴f(x)為奇函數(shù).
(2)f(x)是(-∞,+∞)上的增函數(shù).
∵對-∞<x1<x2<+∞,2x1-2x2<0,
f(x)=
2x-1
2x+1
=1-
2
2x+1

f(x1)-f(x2)=(1-
2
2x1+1
)-(1-
2
2x2+1
)=
2
2x2+1
-
2
2x1+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
<0
;
∴f(x)是(-∞,+∞)上的增函數(shù).
(3)∵f(x)=
2x-1
2x+1
=1-
2
2x+1
,
又f(x)是(-∞,+∞)上的增函數(shù),
∴f(x)∈(-1,1).
(4)∵f(3)=
7
9
;
又∵f(x)>
7
9
即為f(x)>f(3);
又f(x)是(-∞,+∞)上的增函數(shù);
∴不等式f(x)>
7
9
的解集為{x|x>3}
點評:本題綜合考查了函數(shù)的性質(zhì),考查全面,一題多考,知識覆蓋面廣,技能性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-xx+1

(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案