精英家教網(wǎng)如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點(diǎn)C、M,與AC交于N),則圖中陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為
 
分析:幾何體是圖中陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體,是一個(gè)圓錐內(nèi)挖去一個(gè)球后剩余部分,求出圓錐的體積減去球的體積,可得幾何體的體積.
解答:解:幾何體是圖中陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體,
是一個(gè)圓錐內(nèi)挖去一個(gè)球后剩余部分,球是圓錐的內(nèi)接球,
所以圓錐的底面半徑是:1,高為
3

球的半徑為r,tan30°=
OC
BC
=
r
1
r=
3
3

所以圓錐的體積:
1
3
×12π×
3
=
3
π
3
,
球的體積:
4
3
π×(
3
3
)
3
=
4
3
π
27
,
陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為:
5
3
27
π
,
故答案為:
5
3
27
π
點(diǎn)評(píng):本題考查旋轉(zhuǎn)體的體積,組合體的體積的求法,考查空間想象能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,BC=2
3
,
AB
AC
=4,
AC
CB
=2
,雙曲線M是以B、C為焦點(diǎn)且過A點(diǎn).
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線M的方程;
(Ⅱ)設(shè)過點(diǎn)E(1,0)的直線l分別與雙曲線M的左、右支交于
F、G兩點(diǎn),直線l的斜率為k,求k的取值范圍.;
(Ⅲ)對(duì)于(Ⅱ)中的直線l,是否存在k≠0使|OF|=|OG|若有求出k的值,若沒有說明理由.(O為原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,
AN
=
1
3
NC
,若
BP
=n
BN
,
AP
=m
AB
+
2
11
AC
,求實(shí)數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB=AC,AD是中線,P為AD上一點(diǎn),CF∥AB,BP延長(zhǎng)線交AC、CF于E、F,
求證:PB2=PE•PF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,∠B=60°,AD,CE是角平分線.
求證:AE+CD=AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點(diǎn)D在BC邊上,且AC=2,BC=2.5,AD=1,BD=0.5,則AB的長(zhǎng)為
 
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案