設(shè)集合A={x|
x+1
x-1
≤0},B={x||x|≤1}
,那么“m∈A是m∈B”的( 。
分析:若兩個命題是與數(shù)集有關(guān)的命題,可用集合法判斷充要條件,若集合A是集合B的真子集,則“m∈A”是”m∈B”的充分不必要條件
解答:解:∵
x+1
x-1
<0
?(x+1)(x-1)<0?-1<x<1,∴A=(-1,1)
∵|x|≤1?-1≤x≤1,∴B=[-1,1],
∵集合A是集合B的真子集,
∴m∈A⇒m∈B,反之不成立.
∴“m∈A”是”m∈B”的充分不必要條件.
故選A.
點評:本題考查了必要條件,充分條件和充要條件的判斷方法,解題時要能熟練使用集合法判斷命題的關(guān)系,還要能熟練的解簡單不等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)集合A={x||x-2|≤2,x∈R},B={y|y=-x2,-1≤x≤2},則CR(A∩B)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合A={x|y=1gx},B{x|x<1},則A∪B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x<0},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x+1>0},集合B={x|x2-2<0}則A∪B等于(  )
A、{x|x<-1或x>
2
}
B、{x|-1<x<
2
}
C、{x|x>-
2
}
D、{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},現(xiàn)在我們定義對于任意兩個集合M,N的運算:M?N={x|x∈M∪N,且x?M∩N},則A?B=( 。
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

同步練習(xí)冊答案