滿足條件AB=2,AC=
2
BC的三角形ABC的面積的最大值是
 
分析:設(shè)BC=x,根據(jù)面積公式用x和sinB表示出三角形的面積,再根據(jù)余弦定理用x表示出sinB,代入三角形的面積表達(dá)式,進(jìn)而得到關(guān)于x的三角形面積表達(dá)式,再根據(jù)x的范圍求得三角形面積的最大值.
解答:解:設(shè)BC=x,則AC=
2
x,
根據(jù)面積公式得S△ABC=
1
2
AB•BCsinB
=
1
2
×2x
1-cos2B
,
根據(jù)余弦定理得cosB=
AB2+BC2-AC2
2AB•BC

=
4+x2-(
2
x)2
4x
=
4-x2
4x

代入上式得
S△ABC=x
1-(
4-x2
4x
)
2
=
128-(x2-12)2
16
,
由三角形三邊關(guān)系有
2
x+x>2
x+2>
2
x

解得2
2
-2<x<2
2
+2.
故當(dāng)x=2
3
時,S△ABC取得最大值2
2
點評:本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用.當(dāng)涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a、b、c滿足條件ab+bc+ca=1,給出下列不等式:①a2b2+b2c2+c2a2≥1;②
1
abc
≥2
3
;③(a+b+c)2>2;④a2bc+ab2c+abc2
1
3
;其中一定成立的式子有
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•上海模擬)正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件
1
1
時,⊙A與⊙C有2個交點.( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC—A1B1C1中,AB=AC,AA1=2AB,∠BAC=90°.

(1)在側(cè)棱BB1上找一點D,使得BC1⊥AD,并說明理由;

(2)若點D滿足條件(1),求二面角A-DC1-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC—A1B1C1中,AB=AC,AA1=2AB,∠BAC=90°.

(1)在側(cè)棱BB1上找一點D,使得BC1⊥AD,并說明理由;

(2)若點D滿足條件(1),求二面角A-DC1-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2003-2004學(xué)年上海市民辦中學(xué)八校高三(下)3月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件11時,⊙A與⊙C有2個交點.( )
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<

查看答案和解析>>

同步練習(xí)冊答案