【題目】在四邊形ABCD中,對(duì)角線AC,BD垂直相交于點(diǎn)O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點(diǎn),點(diǎn)P在線段AB上,且
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.

【答案】證明:(Ⅰ)如圖,取OD的中點(diǎn)R,連接PR,QR,則DE∥RQ,
由題知 ,又 ,故AB:AP=4:1=DB:DR,因此AD∥PR,
因?yàn)镻R,RQ平面ADE,
且AD,DE平面ADE,故PR∥平面ADE,RQ∥平面ADE,
又PR∩RQ=R,
故平面PQR∥平面ADE,從而PQ∥平面ADE.
(Ⅱ)解:由題EA=ED=5, ,設(shè)點(diǎn)O到平面ADE的距離為d,
則由等體積法可得 ,
,因此
【解析】(Ⅰ)證明PR∥平面ADE,RQ∥平面ADE,可得平面PQR∥平面ADE,即可證明:直線PQ∥平面ADE;(Ⅱ)由等體積法可得點(diǎn)O到平面ADE的距離,即可求直線BD與平面ADE所成角θ的正弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對(duì)空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲,乙兩組各四名同學(xué)單位時(shí)間內(nèi)引體向上的次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以表示.

(1)如果,求乙組同學(xué)單位時(shí)間內(nèi)引體向上次數(shù)的平均數(shù)和方差;

(2)如果,分別從甲,乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)單位時(shí)間內(nèi)引體向上次數(shù)和為19的概率.

(注:方差,其中的平均數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在正方體的面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)命題:

;

③平面平面

④三棱錐的體積不變.

其中正確的命題序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,對(duì)角線AC,BD垂直相交于點(diǎn)O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點(diǎn),點(diǎn)P在線段AB上,且
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行六面體中,

求證:(1);

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程是 ,射線 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q.求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.?x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設(shè)隨機(jī)變量X~N(1,52),若P(X<0)=P(X>a﹣2),則實(shí)數(shù)a的值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中裝有大小、材質(zhì)都相同的個(gè)紅球,個(gè)黑球和個(gè)白球,從口袋中一次摸出一個(gè)球,連續(xù)摸球兩次

)如果摸出后不放回,求第一次摸出黑球,第二次摸出白球的概率;

)如果摸出后放回,求恰有一次摸到黑球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,,點(diǎn)的中點(diǎn).將沿折起,使點(diǎn)到達(dá)的位置,得到如圖所示的四棱錐,點(diǎn)為棱的中點(diǎn).

(1)求證:平面

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案