已知橢圓
x2
2
+y2=1,其右焦點為F,直線l經(jīng)過點F與橢圓交于A,B
兩點,且|AB|=
4
2
3

(1)求直線l的方程;
(2)求△OAB的面積.
分析:(1)由已知易得右焦點的坐標為F(1,0),分斜率不存在時和斜率存在時,兩種情況討論,結合韋達定理和弦長公式,要求出直線l的方程;
(2)由點到直線距離公式,求出原點O到直線AB的距離,代入三角形面積公式,可得△OAB的面積.
解答:解:(1)∵橢圓的標準方程為:
x2
2
+y2=1

故c=1
則其右焦點的坐標為F(1,0)
當斜率不存在時,直線l的方程為x=1
此時|AB|=
2b2
a
=
2
,不符合條件;
當斜率存在時,設直線l的方程為y=k(x-1),A(x1,y1),B(x2,y2),
則有
y=k(x-1)
x2
2
+y2=1
得:(1+2k2)x2-4k2x+2k2-2=0
則x1+x2=
4k2
1+2k2
,x1x2=
2k2-2
1+2k2

∴|AB|=
1+k2
(
4k2
1+2k2
)2-4×
2k2-2
1+2k2
=
1+k2
1+2k2
×
8
=
4
2
3

解得k=±1
故直線l的方程為:x+y-1=0或x-y-1=0
(2)原點到直線x+y-1=0或x-y-1=0的距離d=
1
2
=
2
2

故△OAB的面積S=
1
2
×
4
2
3
×
2
2
=
2
3
點評:本題考查的知識點是直線與圓錐的曲線的關系,點到直線的距離公式,聯(lián)立方程+韋達定理+設而不求是解答直線與圓錐曲線位置關系的三大法寶.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x22
+y2=1
的右準線l與x軸相交于點E,過橢圓右焦點F的直線與橢圓相交于A、B兩點,點C在右準線l上,且BC∥x軸?求證直線AC經(jīng)過線段EF的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓
x22
+y2=1
的左焦點為F,O為坐標原點.
(I)求過點O、F,并且與橢圓的左準線l相切的圓的方程;
(II)設過點F的直線交橢圓于A、B兩點,并且線段AB的中點在直線x+y=0上,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
2
+y2=1
的左焦點為F,O為坐標原點.過點F的直線l交橢圓于A、B兩點.
(1)若直線l的傾斜角α=
π
4
,求|AB|;
(2)求弦AB的中點M的軌跡方程;
(3)設過點F且不與坐標軸垂直的直線交橢圓于A、B兩點,
線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x22
+y2=1的左、右焦點為F1、F2,上頂點為A,直線AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點O為坐標原點.
( I ) 求三棱錐A-F1F2B的體積;
(Ⅱ)圖2中線段BF2上是否存在點M,使得AM⊥OB,若存在,請在圖1中指出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)如圖,已知橢圓
x2
2
+y2=1
內(nèi)有一點M,過M作兩條動直線AC、BD分別交橢圓于A、C和B、D兩點,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)證明:AC⊥BD;
(2)若M點恰好為橢圓中心O
(i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請說明理由.
(ii)求弦AB長的最小值.

查看答案和解析>>

同步練習冊答案