函數(shù)y=x2-2ax+1在[0,2]上的值域為
 
考點:二次函數(shù)在閉區(qū)間上的最值
專題:計算題,函數(shù)的性質(zhì)及應用
分析:先判斷二次函數(shù)的開口方向及對稱軸,然后根據(jù)對稱軸與已知區(qū)間的位置關系進行求解函數(shù)的最值,進而可求值域
解答: 解:y=x2-2ax+1的圖象開口向上,對稱軸為x=a,
①當a<0時,y=x2-2ax+1在[0,2]上單調(diào)遞增,
ymin=1,ymax=5-4a,
∴函數(shù)的值域為[1,5-4a];
②當a>2時,函數(shù)在[0,2]上單調(diào)遞減,
ymin=5-4a,ymax=1,
∴函數(shù)的值域為[5-4a,1];
③當0≤a≤1時,y=x2-2ax+1在[0,a]上單調(diào)遞減,在[a,2]上單調(diào)遞增,
ymin=a2-2a×a+1=1-a2,ymax=5-4a,
此時函數(shù)的值域為[1-a2,5-4a];
④當1<a≤2時,y=x2-2ax+1在[0,a]上單調(diào)遞減,在[a,2]上單調(diào)遞增,
ymin=a2-2a×a+1=1-a2,ymax=1,
此時函數(shù)的值域為[1-a2,1];
綜上,當a<0時,函數(shù)的值域為[1,5-4a];當a>2時,函數(shù)的值域為[5-4a,1];當0≤a≤1時,函數(shù)的值域為[1-a2,5-4a];
當1<a≤2時,函數(shù)的值域為[1-a2,1].
故答案為:當a<0時,函數(shù)的值域為[1,5-4a],
當a>2時,函數(shù)的值域為[5-4a,1];
當0≤a≤1時,函數(shù)的值域為[1-a2,5-4a];
當1<a≤2時,函數(shù)的值域為[1-a2,1].
點評:本題主要考查了二次函數(shù)在閉區(qū)間上的最值的求解,解題的關鍵是確定函數(shù)的對稱軸與區(qū)間的位置關系,體現(xiàn)了分類討論思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0).
(1)若f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)求f(x)在[
1
2
,2]上的最小值h(a)的表達式;
(3)當a=1時,求證:當n∈N*,n>1時都有l(wèi)nx>
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,M,N,P,Q分別是棱B1C1,C1D1,D1A1,BC的中點,則異面直線MN與PQ所成的角等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+ax+b,x∈(-1,3),f(x)≤0恒成立,則2a+b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1+2a2=3,點Pn(n,an)對任意的n∈N*,都有向量
PnPn+1
=(1,2),則數(shù)列{an}的前n項和Sn
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式是an=
6,n=1
2n+2,n≥2
,設{an}的前n項和為Sn,則
1
S1
+
1
S2
+
1
S4
+…+
1
Sn
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正實數(shù)x1,x2及函數(shù)f(x)滿足2x=
1+f(x)
1-f(x)
,且f(x1)+f(x2)=1,則f(x1+x2)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
1
x
-2(x<0),則f(x)有最
 
值為
 
,此時x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的圖象如圖所示,則不等式(x+3)•f′(x)<0的解集為(  )
A、(-∞,-3)∪(-1,1)
B、(-∞,-3)
C、(-∞,-1)∪(1,+∞)
D、(1,+∞)

查看答案和解析>>

同步練習冊答案