精英家教網 > 高中數學 > 題目詳情
如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.
(Ⅰ)證明:AE⊥PD;
(Ⅱ)若直線PB與平面PAD所成角的正弦值為
6
4
,△ABC中,|AB|=|AC|=
7
2
,|BC|=2
,求二面角E-AF-C的余弦值.
分析:(I)根據題意可得:△ABC為正三角形,所以AE⊥BC,又因為BC∥AD,所以AE⊥AD.又PA⊥AE,且PA∩AD=A,所以AE⊥平面PAD,進而可得答案;
(Ⅱ)先根據條件建立空間直角坐標系,求出各點的坐標,結合直線PB與平面PAD所成角的正弦值,求出AP的長,進而求出兩個半平面的法向量,代入向量的夾角計算公式即可求出結論.
解答:(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.
因為E為BC的中點,所以AE⊥BC.
又因為BC∥AD,所以AE⊥AD.
因為PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD且PA∩AD=A,所以AE⊥平面PAD.
又PD?平面PAD,所以AE⊥PD.
(Ⅱ)解:由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標原點,建立如圖所示的空間直角坐標系A-xyz,
設AB=2,AP=a,則A(0,0,0),B(
3
,-1,0),C(
3
,1,0),D(0,2,0),P(0,0,a),E(
3
,0,0),F(
3
2
1
2
,
a
2
)所以
FB
=(
3
,-1,-a),且
AE
=(
3
,0,0)為平面PAD的法向量,
設直線PB與平面PAD所成的角為θ,
由sinθ=|cos<
PB
AE
>|=
3
4+a2
×
3
=
6
4
,解得a=2.
所以
AF
=(
3
2
1
2
,1
).
設平面AEF的一法向量為
m
=(x1,y1,z1),則
m
AE
=0
m
AF
=0
,因此
3
x1=0
3
2
x1+
1
2
y1+z1=0

取z1=-1,則
m
=(0,2,-1).
因為BD⊥AC,BD⊥PA,PA∩AC=A,
所以BD⊥平面AFC,故
BD
為平面AFC的一法向量.
BD
=(-
3
,3,0),所以cos<
m
BD
>=
m
BD
|
m
||
BD
|
=
15
5

因為二面角E-AF-C為銳角,故所求二面角的余弦值為
15
5
點評:解決此類問題的關鍵是熟練掌握幾何體的結構特征,以便利用已知條件得到空間的線面關系,并且便于建立坐標系利用向量的有關運算解決空間角等問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習冊答案