已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:Sn=a(Sn-an+1)(a為常數(shù),且a≠0,a≠1).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an2+Sn•an,若數(shù)列{bn}為等比數(shù)列,求a的值;
(Ⅲ)設(shè)cn=logaa2n-1,求數(shù)列{a2n•cn}的前n項(xiàng)和Tn
(I)∵Sn=a(Sn-an+1)
∴Sn-1=a(Sn-1-an-1+1)(n≥2)
兩式相減可得,Sn-Sn-1=a(Sn-an+1-Sn-1+an-1-1)(n≥2)
即an=a[(Sn-Sn-1)-an+an-1]=a•an-1
an
an-1
=a
(n≥2)
∵S1=a(s1-a1+1)
∴a1=a
∴數(shù)列{an}是以a為首項(xiàng)以a為公比的等比數(shù)列
∴an=an
(II)∵Sn=a(Sn-an+1)
∴Sn=a×
1-an
1-a

∴bn=an2+Sn•an=an(an+
a(1-an)
1-a

∵bn為等比數(shù)列∴b22=b1b3
a4[a2+
a(1-a2)
1-a
] 2
=2a2•a3[a3+
a(1-a3)
1-a
]

∵a≠0,a≠1
解可得a=
1
2

(III)∵Cn=logaa2n-1=2n-1,a2n•Cn=(2n-1)•a2n
∴Tn=a2+3a4+…+(2n-1)a2n
a2Tn=a4+3a6+…+(2n-3)a2n+(2n-1)•a2n+2
兩式相減可得,(1-a2)Tn=a2+2(a4+a6+…+a2n)-(2n-1)•a2n+2
=a2+
2a4(1-a2n-2)
1-a2
-(2n-1)•a2n+2


∴Tn=
a2(1+a2)-(2n+1)•a2n+2+(2n+1)•a2n+4
(1-a2) 2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿(mǎn)足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案