19.已知函數(shù)f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$-2$\sqrt{3}$sin2$\frac{x}{4}$+$\sqrt{3}$.
(1)求f(x)的最小正周期及最值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

分析 利用三角恒等變換化函數(shù)f(x)為正弦型函數(shù),再求:
(1)函數(shù)f(x)的最小正周期和最大、最小值;
(2)求出函數(shù)f(x)的單調(diào)增區(qū)間.

解答 解:函數(shù)f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$-2$\sqrt{3}$sin2$\frac{x}{4}$+$\sqrt{3}$
=sin$\frac{x}{2}$-2$\sqrt{3}$×$\frac{1-cos\frac{x}{2}}{2}$+$\sqrt{3}$
=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$
=2sin($\frac{x}{2}$+$\frac{π}{3}$);
(1)函數(shù)f(x)的最小正周期是T=$\frac{2π}{\frac{1}{2}}$=4π,
且當(dāng)$\frac{x}{2}$+$\frac{π}{3}$=$\frac{π}{2}$+2kπ,k∈Z,
即x=$\frac{π}{3}$+4kπ(k∈Z)時(shí),f(x)取得最大值2,
當(dāng)$\frac{x}{2}$+$\frac{π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,
即x=-$\frac{5π}{3}$+4kπ(k∈Z)時(shí),f(x)取得最小值-2;
(2)令-$\frac{π}{2}$+2kπ≤$\frac{x}{2}$+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{5π}{3}$+4kπ≤x≤$\frac{π}{3}$+4kπ,k∈Z;
所以函數(shù)f(x)的單調(diào)增區(qū)間是:
[-$\frac{5π}{3}$+4kπ,$\frac{π}{3}$+4kπ],k∈Z.

點(diǎn)評(píng) 本題考查了三角恒等變換以及正弦型函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.cos$\frac{7}{6}$π=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在三棱錐P-ABC中,△ABC為等邊三角形,PA=8,PB=PC=$\sqrt{73}$,AB=3,則三棱錐P-ABC的外接球的表面積是76π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a10=30,a15=40
(1)求通項(xiàng)an
(2)若Sn=210,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.定義在R上的函數(shù)y=f(x)滿足f(4+x)=f(-x),(x-2)f′(x)>0,則“f(x)>f(1)”是“x<1”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若直線y=kx與曲線y=lnx有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍為$(0,\frac{1}{e})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知cosα=-$\frac{4}{5}$(${\frac{π}{2}$<α<π),求cos($\frac{π}{6}$-α),cos(${\frac{π}{6}$+α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知各項(xiàng)都不相等的等差數(shù)列{an}滿足a4=10,且a1,a2,a6成等比數(shù)列.若${_{n}}={{2}^{{{a}_{n}}}}$+2n,則數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{2}{7}({{8}^{n}}-1)+n(n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{ax-1}{{{x^2}+2}}$(x∈R),當(dāng)x=2時(shí)f(x)取得極值.
(1)求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)-2m+1=0在x∈[-2,1]時(shí)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案