遞增等比數(shù)列{an}中,a2+a3=6,a2a3=8,則q=
 
分析:利用條件求出a2=2,a3=4,進(jìn)而可求公比.
解答:解:∵a2+a3=6,a2a3=8,
∴a2=2,a3=4或a2=4,a3=2,
∵數(shù)列是遞增數(shù)列,
∴a2=2,a3=4,
∴公比q=2.
故答案為:2.
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項(xiàng),
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=anlog
12
an
,Sn=b1+b2+…+bn,求使Sn+n•2n+1>62成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)單調(diào)遞增等比數(shù)列{an}滿足a1+a2+a3=7,且a3是a1,a2+5的等差中項(xiàng),
(1)求數(shù)列{an}的通項(xiàng);
(2)數(shù)列{cn}滿足:對(duì)任意正整數(shù)n,
c1
a1
+
c2
a2
+…+
cn
an
=22+
2n-11
2n-1
均成立,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•涼山州二模)遞增等比數(shù)列{an}中,a2+a5=9,a3a4=18,則
a2013
a2010
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

遞增等比數(shù)列{an}中a1=2,前n項(xiàng)和為Sn,S2是a2,a3的等差中項(xiàng):
(Ⅰ)求Sn及an;
(Ⅱ)數(shù)列{bn}滿足bn=logan2logan+12+
2
25
log2an,{bn}的前n項(xiàng)和為Tn,求
Tn
n
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案