精英家教網 > 高中數學 > 題目詳情

若不等式>sinθ-1對一切實數x恒成立,求θ的取值范圍.

答案:
解析:

  原不等式sinθ-cosθ<sinθ-cosθ≤()min

  因為≥0,所以sinθ-cosθ≤0.

  解得2kπ-≤θ≤2kπ-(k∈Z)


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網A.(不等式選講選做題)若不等式|x+1|+|x-2|<a無實數解,則a的取值范圍是
 

B.(幾何證明選做題)如圖,⊙O的直徑AB=6cm,P是AB延長線上的一點,過P點作⊙O的切線,切點為C,連接AC,若∠CPA=30°,PC=
 

C.(極坐標參數方程選做題)曲線
x=cosα
y=1+sinα
(a為參數)與曲線ρ2-2ρcosθ=0的交點個數為
 
個.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區(qū)一模)對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.則DE=
8
8

B.(坐標系與參數方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數),C2
x=cosθ
y=sinθ
(θ為參數),當α=
π
3
時,C1與C2的交點坐標為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對一切非零實數a恒成立,則實數a的取值范圍
[-
1
2
,
3
2
]
[-
1
2
,
3
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)在(-∞,0]上是增函數,且f(-
1
2
)=2
,那么不等式f(sin(2x-
π
3
))<2
[-
π
2
π
2
]
上的解集為( 。
A、[-
π
2
,-
π
3
)∪(-
π
4
π
12
)∪(
π
6
,
π
2
]
B、[-
π
2
,-
π
3
)∪(
π
6
,
π
2
]
C、[-
π
2
,-
π
3
)∪(-
π
4
,
π
2
D、[-
π
2
,-
12
)∪(-
π
4
π
12
)∪(
π
4
,
π
2
]

查看答案和解析>>

同步練習冊答案