用秦九韶算法計(jì)算多項(xiàng)式f(x)=2x6+3x5+5x3+6x2+7x+8在x=2時(shí)的值時(shí),V2的值為( 。
分析:首先把一個(gè)n次多項(xiàng)式f(x)寫成(…((anx+a n-1)x+an-2)x+…+a1)x+a0的形式,然后化簡(jiǎn),求n次多項(xiàng)式f(x)的值就轉(zhuǎn)化為求n個(gè)一次多項(xiàng)式的值,求出V2的值.
解答:解:∵f(x)=2x6+3x5+5x3+6x2+7x+8
=(((((2x+3)x+0)x+3)x+6)x+7)x+8
∴v0=a6=2,
v1=v0x+a5=2×2+3=7,
v2=v1x+a4=7×2+0=14,
故選C.
點(diǎn)評(píng):本題考查秦九韶算法,正確理解秦九韶算法求多項(xiàng)式的原理是解題的關(guān)鍵,本題是一個(gè)比較簡(jiǎn)單的題目,運(yùn)算量也不大,只要細(xì)心就能夠做對(duì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計(jì)算當(dāng)x=2時(shí),多項(xiàng)函數(shù)f(x)=3x3+7x2-9x+5的值為_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案