解答題

一直線過(guò)點(diǎn)(-5,-4),且與兩坐標(biāo)軸圍成的三角形的面積為5,求此直線的方程.

答案:
解析:

  設(shè)直線方程為y4k(x5).令y0,則x=-5,令x0,則y=-45k,

  ∴S|(5)·(45k)|5,

  即|4025k|10

  當(dāng)4025k10時(shí),k無(wú)解;當(dāng)4025k=-10時(shí),解得k

  ∴直線方程為2x5y1008x5y200


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

解答題

已知雙曲線x2=1,問(wèn)過(guò)點(diǎn)P(1,1)能否作一條直線l與雙曲線交于A、B兩點(diǎn),且點(diǎn)P恰是弦AB的中點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

已知過(guò)原點(diǎn)O的一條直線與函數(shù)y=log8x的圖象交于A,B兩點(diǎn),分別過(guò)點(diǎn)A,B作y軸的平行線與函數(shù)y=log2x的圖象交于C,D兩點(diǎn).

(1)證明點(diǎn)C,D和原點(diǎn)O在同一直線上.

(2)當(dāng)BC平行于x軸時(shí),求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:潮陽(yáng)一中2007屆高三摸底考試、理科數(shù)學(xué) 題型:044

解答題

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)為圓心,1為半徑為圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對(duì)稱(chēng).

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

(3)

設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點(diǎn),另一直線L經(jīng)過(guò)M(-2,0)及AB的中點(diǎn),求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:潮陽(yáng)一中2007屆高三摸底考試、文科數(shù)學(xué) 題型:044

解答題

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)為圓心,1為半徑為圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對(duì)稱(chēng).

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

(3)

設(shè)直線y=mx+1與雙曲線C的左支交于A、B兩點(diǎn),另一直線L經(jīng)過(guò)M(-2,0)及AB的中點(diǎn),求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案