(2013•長(zhǎng)寧區(qū)一模)我們知道,在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為S=
1
2
cr
.類比這個(gè)結(jié)論,在空間中,果已知一個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是
V=
1
3
S′R
V=
1
3
S′R
分析:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).
解答:解:在平面中,如果一個(gè)凸多邊形有內(nèi)切圓,那么凸多邊形的面積S、周長(zhǎng)c與內(nèi)切圓半徑r之間的關(guān)系為S=
1
2
cr

類比這個(gè)結(jié)論,可得
個(gè)凸多面體有內(nèi)切球,且內(nèi)切球半徑為R,那么凸多面體的體積V、表面積S'與內(nèi)切球半徑R之間的關(guān)系是V=
1
3
S′R
,
故答案為 V=
1
3
S′R
點(diǎn)評(píng):本題主要考查的知識(shí)點(diǎn)是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(-2)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)(2-
x
8 展開(kāi)式中含x4項(xiàng)的系數(shù)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)已知函數(shù)f(x)=
1+x
+
1-x

(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)=
a
x
•[f2(x)-2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若-m2+2tm+
2
≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)寧區(qū)一模)“φ=
π
2
”是“函數(shù)y=sin(x+φ)為偶函數(shù)的”( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案