在平面直角坐標系xOy中,O為坐標原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請說明理由.

(1)=1(x≠±2)(2)x=1

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E=1(a>b>0)的右焦點為F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,OP(O為坐標原點)與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓)的焦距為,且過點(,),右焦點為.設(shè)上的兩個動點,線段的中點的橫坐標為,線段的中垂線交橢圓,兩點.

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點為,設(shè)左頂點為A,上頂點為B且,如圖.

(1)求橢圓的方程;
(2)若,過的直線交橢圓于兩點,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線C:的離心率為,左頂點為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB的中點在圓上,求m的值和線段AB的長。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點,M為橢圓上任意一點,且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點F2(c,0)到直線lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是,又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線l1:4x-3y+6=0和直線l2x=- (p>2).若拋物線Cy2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點M處的切線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案