等比數(shù)列{an}中an>0,且a5•a6=9,則log3a2+log3a9=


  1. A.
    9
  2. B.
    6
  3. C.
    3
  4. D.
    2
D
分析:因為等比數(shù)列中的項滿足:若m+n=p+q,m,n,p,q∈N*,則am+an=ap+aq,所以a2•a9=a5•a6,再根據(jù)對數(shù)的運算律,就可求出log3a2+log3a9的值.
解答:log3a2+log3a9=log3(a2•a9
∵{an}為等比數(shù)列,
∴a2•a9=a5•a6=9
∴l(xiāng)og3a2+log3a9=log39=2
故選D
點評:本題主要考查等比數(shù)列的性質(zhì),以及對數(shù)的運算性質(zhì)的應(yīng)用,關(guān)鍵是把所求對數(shù)的真數(shù)化為已知數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a1+a3=10,a4+a6=
5
4
,則數(shù)列{an}的通項公式為( 。
A、an=24-n
B、an=2n-4
C、an=2n-3
D、an=23-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公比為2的等比數(shù)列{an}中,Sn為其前n項和,若S99=56,則a3+a6+a9+…+a99的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1,a10是方程x2-x-6=0的兩根,則a4•a7=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文) 已知正項等比數(shù)列{an}中,a1a5=2,則a3=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,首項為a1,公比為q,則下列條件中,使{an}一定為遞減數(shù)列的條件是(  )

查看答案和解析>>

同步練習(xí)冊答案