設(shè)a>0且a≠0,函數(shù)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在(3,f(3))處切線的斜率;
(2)求函數(shù)f(x)的極值點(diǎn).
【答案】分析:(1)由已知中函數(shù) ,根據(jù)a=2,我們易求出f(3)及f′(3)的值,代入即可得到切線的斜率k=f′(3).
(2)由已知我們易求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)值為0,我們則求出導(dǎo)函數(shù)的零點(diǎn),根據(jù)m>0,我們可將函數(shù)的定義域分成若干個(gè)區(qū)間,分別在每個(gè)區(qū)間上討論導(dǎo)函數(shù)的符號,即可得到函數(shù)函數(shù)f(x)的極值點(diǎn).
解答:解:(1)由已知x>0(2分)
當(dāng)a=2時(shí),(4分)
所以,
曲線y=f(x)在(3,f(3))處切線的斜率為,(6分)
(2)(8分)
由f'(x)=0得x=1或x=a,(9分)
①當(dāng)0<a<1時(shí),
當(dāng)x∈(0,a)時(shí),f'(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(a,1)時(shí),f'(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),f'(x)>0,函數(shù)f(x)單調(diào)遞增.
此時(shí)x=a是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn)(10分)
②當(dāng)a>1時(shí),
當(dāng)x∈(0,1)時(shí),f'(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(a,1)時(shí),f'(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(a,+∞)時(shí),f'(x)>0,函數(shù)f(x)單調(diào)遞增
此時(shí)x=1是f(x)的極大值點(diǎn),x=a是f(x)的極小值點(diǎn)(13分)
綜上,當(dāng)0<a<1時(shí),x=a是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn);
當(dāng)a=1時(shí),f(x)沒有極值點(diǎn);
當(dāng)a>1時(shí),x=1是f(x)的極大值點(diǎn),x=a是f(x)的極小值點(diǎn)
點(diǎn)評:本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,其中根據(jù)已知函數(shù)的解析式求出導(dǎo)函數(shù)的解析式是解答本題的關(guān)鍵,還考查利用導(dǎo)函數(shù)來研究函數(shù)的極值.在利用導(dǎo)函數(shù)來研究函數(shù)的極值時(shí),分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號,若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省廣州市高三9月三校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的定義域?yàn)镈,若對于任意,當(dāng)時(shí),都有,則稱函

數(shù)在D上為非減函數(shù),設(shè)函數(shù)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:

;     ②;      ③.

等于(    )

A.     B.        C.       D.無法確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3

③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省丹東市寬甸二中高三(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù),設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案