已知點(diǎn)P是曲線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線為參數(shù))的最短距離為(    )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓M:x2+(y+m)2=8(m>0,m≠
2
)上一動(dòng)點(diǎn),點(diǎn)N(0,m)是圓M所在平面內(nèi)一定點(diǎn),線段NP的垂直平分線l與直線MP相交于點(diǎn)Q.
(Ⅰ)當(dāng)P在圓M上運(yùn)動(dòng)時(shí),記動(dòng)點(diǎn)Q的軌跡為曲線Γ,判斷曲線Γ為何種曲線,并求出它的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)原點(diǎn)斜率為k的直線交曲線Γ于A,B兩點(diǎn),其中A在第一象限,且它在y軸上的射影為點(diǎn)C,直線BC交曲線Γ于另一點(diǎn)D,記直線AD的斜率為k′.是否存在m,使得對(duì)任意的k>0,都有|k•k′|=1?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•石家莊一模)已知點(diǎn)P在曲線y=ex(e為自然對(duì)數(shù)的底數(shù))上,點(diǎn)Q在曲線y=lnx上,則丨PQ丨的最小值是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一條曲線C在y軸右側(cè),C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)(文科做)已知點(diǎn)P是曲線C上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線x+2y+5=0上一個(gè)動(dòng)點(diǎn),求|PQ|的最小值.
(理科做)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有
FA
FB
<0
?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•石家莊一模)已知點(diǎn)P在曲線y=ex(e自然對(duì)數(shù)的底數(shù))上,點(diǎn)Q在曲線y=lnx上,則丨PQ丨的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年福建省四地六校高二第二次月考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知點(diǎn)、,()是曲線C上的兩點(diǎn),點(diǎn)、關(guān)于軸對(duì)稱,直線、分別交軸于點(diǎn)和點(diǎn),

(Ⅰ)用、、分別表示;

(Ⅱ)某同學(xué)發(fā)現(xiàn),當(dāng)曲線C的方程為:時(shí),是一個(gè)定值與點(diǎn)、的位置無(wú)關(guān);請(qǐng)你試探究當(dāng)曲線C的方程為:時(shí), 的值是否也與點(diǎn)M、N、P的位置無(wú)關(guān);

(Ⅲ)類比(Ⅱ)的探究過(guò)程,當(dāng)曲線C的方程為時(shí),探究經(jīng)加、減、乘、除的某一種運(yùn)算后為定值的一個(gè)正確結(jié)論.(只要求寫出你的探究結(jié)論,無(wú)須證明).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案