已知函數(shù)f(x)=x3-3ax(a∈R)
(1)當a=1時,求f(x)的極小值;
(2)若直線x+y+m=0對任意的m∈R都不是曲線y=f(x)的切線,求a的取值范圍;
(3)設(shè)g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.
【答案】分析:(1)由f(x)=x3-3ax,得f′(x)=3x2-3a,當f′(x)>0,f′(x)<0時,分別得到f(x)的單調(diào)遞增區(qū)間、單調(diào)遞減區(qū)間,由此可以得到極小值為f(1)=-2.
(2)要使直線x+y+m=0對任意的m∈R都不是曲線y=f(x)的切線,只需令直線的斜率-1小于f(x)的切線的最小值即可,也就是-1<-3a.
(3)由已知易得g(x)為[-1,1]上的偶函數(shù),只需求在[0,1]上的最大值F(a).有必要對a進行討論:①當a≤0時,f′(x)≥0,得F(a)=f(1)=1-3a;②當a≥1時,f(x)≤0,且f(x)在[0,1]上單調(diào)遞減,得g(x)=-f(x),則F(a)=-f(1)=3a-1;當0<a<1時,得f(x)在[0,]上單調(diào)遞減,在[,1]上單調(diào)遞增.當f(1)≤0時,f(x)≤0,所以得g(x)=-f(x),F(xiàn)(a)=-f()=2a,當f(1)>0,需要g(x)在x=處的極值與f(1)進行比較大小,分別求出a的取值范圍,即綜上所述求出F(a)的解析式.
解答:解:(1)∵當a=1時,f′(x)=3x2-3,令f′(x)=0,得x=-1或x=1,當f′(x)<0,即x∈(-1,1)時,f(x)為減函數(shù);當f′(x)>0,即x∈(-∞,-1],或x∈[1,+∞)時,f(x)為增函數(shù).∴f(x)在(-1,1)上單調(diào)遞減,在(-∞,-1],[1,+∞)上單調(diào)遞增∴f(x)的極小值是f(1)=-2
(2)∵f′(x)=3x2-3a≥-3a,∴要使直線x+y+m=0對任意的m∈R都不是曲線y=f(x)的切線,當且僅當-1<-3a時成立,∴
(3)因g(x)=|f(x)|=|x3-3ax|在[-1,1]上是偶函數(shù),故只要求在[0,1]上的最大值
①當a≤0時,f′(x)≥0,f(x)在[0,1]上單調(diào)遞增且f(0)=0,∴g(x)=f(x),F(xiàn)(a)=f(1)=1-3a.
②當a>0時,,
(。┊時,g(x)=|f(x)|=-f(x),-f(x)在[0,1]上單調(diào)遞增,此時F(a)=-f(1)=3a-1
(ⅱ)當時,當f′(x)>0,即x>或x<-時,f(x)單調(diào)遞增;當f′(x)<0,即-<x<時,f(x)單調(diào)遞減.所以,在單調(diào)遞增.
1°當時,;
2°當
(。┊
(ⅱ)當
綜上所述
點評:本題綜合性較強,主要考查導數(shù)的單調(diào)性、極值、最值等函數(shù)基礎(chǔ)知識,尤其第三小題,考查帶有參數(shù)的函數(shù)題型,更是值得推敲,希望在平時,多加練習,掌握其要領(lǐng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案