以下三個(gè)命題:(1)對(duì)任意實(shí)數(shù),在上函數(shù)都能取到最大值1;

(2)若存在非零實(shí)數(shù),使對(duì)任意實(shí)數(shù)恒成立,則是周期函數(shù);

(3)存在使.

其中正確命題的個(gè)數(shù)為            (    )

    A.0            B.1           C.2        D.3

 

【答案】

 選C.對(duì)于(1), 的周期為,在其半個(gè)周期上不一定有最大值;對(duì)于(2),由于,所以,是其周期;對(duì)于(3),由三角函數(shù)線(xiàn)或正余弦函數(shù)的圖象可知正確.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下三個(gè)命題,其中所有正確命題的序號(hào)為

①已知等差數(shù)列{an}的前n項(xiàng)和為Sn,
AO
OB
為不共線(xiàn)向量,又
OP
=a1
OA
+a2012
OB
,若
PA
PB
,則S2012=1006.
②“a=
1
0
1-x2
dx
”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
③已知函數(shù)f(x)=|x2-2|,若f(a)=f(b),且0<a<b,則動(dòng)點(diǎn)P(a,b)到直線(xiàn)4x+3y-15=0的距離的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下三個(gè)命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|PA|-|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
②雙曲線(xiàn)
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
其中真命題的序號(hào)為
②③
②③
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下三個(gè)命題:
(1)將一枚硬幣拋擲兩次,記事件A:“兩次都出現(xiàn)正面”,事件B:“兩次都出現(xiàn)反面”,則事件A與事件B是對(duì)立事件;
(2)在命題(1)中,事件A與事件B是互斥事件;
(3)在10件產(chǎn)品中有3件是次品,從中任取3件,記事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,則事件A與事件B是互斥事件.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
(1)函數(shù)f(x)=x2ex既無(wú)最小值也無(wú)最大值;
(2)在區(qū)間[-3,3]上隨機(jī)取一個(gè)數(shù)x,使得|x-1|+|x+2|≤5成立的概率為
5
6
;
(3)若不等式(m+n)(
a
m
+
1
n
)≥25對(duì)任意正實(shí)數(shù)m,n恒成立,則正實(shí)數(shù)a的最小值為16;
(4)已知函數(shù)f(x)=
5
x+1
-3,(x≥0)
x2+4x+2,(x<0)
,若方程f(x)=k(x+2)-2恰有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是k∈(0,2);
以上正確的序號(hào)是:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案