(本小題滿(mǎn)分14分)在平面直角坐標(biāo)系中,已知點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的切線(xiàn),其切點(diǎn)分別為(其中)。
⑴ 求的值;
⑵ 若以點(diǎn)為圓心的圓與直線(xiàn)相切,求圓的面積。
,;⑵圓的面積為 。

試題分析:(Ⅰ)由y=x2先求出y′=2x.再由直線(xiàn)PM與曲線(xiàn)T0相切,且過(guò)點(diǎn)P(1,-1),得到x1=1-,或x1=1+;同理可得x2=1-,或x2=1+,然后由x1<x2知x1=1-,x2=1+
(Ⅱ)由題意知,x1+x2=2,x1•x2=-1,則直線(xiàn)MN的方程為:2x-y+1=0.再由點(diǎn)P到直線(xiàn)MN的距離即為圓E的半徑,可求出圓E的面積.
解:⑴由可得,    ……1分
∵直線(xiàn)與曲線(xiàn)相切,且過(guò)點(diǎn),∴,即,
,   ……3分    ∴,  ……5分
同理可得    ……6分
   ∴    ……7分
⑵由⑴知,   
      ……9分
直線(xiàn)方程為:, 即   ……11分
     ……13分  故圓的面積為      ……14分
點(diǎn)評(píng):解決該試題的關(guān)鍵是能運(yùn)用導(dǎo)數(shù)的幾何意義得到切點(diǎn)的坐標(biāo),并能利用韋達(dá)定理,得到直線(xiàn)方程,點(diǎn)到直線(xiàn)的距離公式得到圓的半徑求解其面積。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓,橢圓,若的離心率為,如果相交于兩點(diǎn),且線(xiàn)段恰為圓的直徑,求直線(xiàn)與橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知拋物線(xiàn),過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn),且直線(xiàn)軸交于點(diǎn).(1)求證:,成等比數(shù)列;
(2)設(shè),,試問(wèn)是否為定值,若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E. 求軌跡E的方程,并說(shuō)明該方程所表示曲線(xiàn)的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為雙曲線(xiàn)的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)為雙曲線(xiàn)與圓的一個(gè)交點(diǎn),且滿(mǎn)足,求此雙曲線(xiàn)的離心率;
(Ⅱ)設(shè)雙曲線(xiàn)的漸近線(xiàn)方程為,到漸近線(xiàn)的距離是,過(guò)的直線(xiàn)交雙曲線(xiàn)于A(yíng),B兩點(diǎn),且以AB為直徑的圓與軸相切,求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的左,右焦點(diǎn)分別為,過(guò) 的直線(xiàn)L與橢圓C相交 A,B于兩點(diǎn),且直線(xiàn)L的傾斜角為,點(diǎn)到直線(xiàn)L的距離為 ,
(1)  求橢圓C的焦距.(2)如果求橢圓C的方程.(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是雙曲線(xiàn)C:的左焦點(diǎn),是雙曲線(xiàn)的虛軸,的中點(diǎn),過(guò)的直線(xiàn)交雙曲線(xiàn)C于,且,則雙曲線(xiàn)C離心率是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知拋物線(xiàn), 過(guò)點(diǎn)引一弦,使它恰在點(diǎn)被平分,求這條弦所在的直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

中,=90°,.若以、為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn),則該橢圓的離心率         

查看答案和解析>>

同步練習(xí)冊(cè)答案