14.如圖,∠C=$\frac{π}{2}$,AC=BC,M,N分別是BC、AB的中點(diǎn),沿直線MN將△BMN折起使點(diǎn)B到達(dá)B′,且∠B′MB=$\frac{π}{3}$,則B′A與平面ABC所成角的正切值為( 。
A.$\frac{\sqrt{2}}{5}$B.$\frac{\sqrt{3}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 由題意畫出圖形,作出B′A在平面ABC上的投影,得到B′A與平面ABC所成角,求解直角三角形得答案.

解答 解:如圖:

 由于折疊之前BM與CM都始終垂直于MN,這在折疊之后仍然成立,
∴折疊之后平面B′MN與平面BMN所成的二面角即為∠B′MB=$\frac{π}{3}$,并且B′在底面ACB內(nèi)的投影點(diǎn)H就在BC上,且恰在BM的中點(diǎn)位置,
連接B′A和AH,設(shè)AC=BC=a,
在直角三角形ACH中,AH=$\frac{5}{4}$a,
在直角三角形B′MH中,由于B′M=$\frac{1}{2}$a,∠B′MH=60°,∴B′H=$\frac{\sqrt{3}}{4}$a,
在直角三角形B′AH中,tan∠B′AH=$\frac{B′H}{AH}=\frac{\frac{\sqrt{3}}{4}a}{\frac{5}{4}a}=\frac{\sqrt{3}}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查直線與平面所成的角,關(guān)鍵應(yīng)抓住折疊前與折疊后的變量與不變量,考查了二面角的平面角及直線與平面所成角的概念,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)f(x),g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若?x∈[a,b]都有|f(x)-g(x)|≤1成立,則稱f(x),g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2+3x+2,g(x)=2x+1在[a,b]上是“親密函數(shù)”,則其“親密區(qū)間”是( 。
A.[0,2]B.[0,1]C.[1,2]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的圖象與x軸相切,若直線y=c與y=c+5依次交f(x)的圖象于A,B,C,D四點(diǎn),且四邊形ABCD的面積為25,則正實(shí)數(shù)c的值為( 。
A.4B.6C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD中點(diǎn).

(1)證明:CD⊥平面PAE;
(2)若直線PB與平面ABCD所成角為45°,求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.將1到n的n個(gè)正整數(shù)按下面的方法排成一個(gè)排列,要求:除左邊的第一個(gè)數(shù)外,每個(gè)數(shù)都與它左邊(未必相鄰)的某個(gè)數(shù)相差1,將此種排列稱為“n排列”.比如“2排列”為n=2時(shí),有1,2;和2,1;共2種排列.“3排列”為當(dāng)n=3時(shí),有1,2,3;2,1,3;2,3,1;3,2,1;共4種排列.
(1)請(qǐng)寫出“4排列”的排列數(shù);
(2)問(wèn)所有“n排列”的結(jié)尾數(shù)只能是什么數(shù)?請(qǐng)加以證明;
(3)證明:“n排列”共有2n-1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若a和b是計(jì)算機(jī)在區(qū)間(0,2)上產(chǎn)生的均勻隨機(jī)數(shù),則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為(  )
A.$\frac{1+2ln2}{4}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在四面體ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M為AB中點(diǎn),則CM與平面ABD所成角的正弦值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.學(xué)校要了解學(xué)生對(duì)預(yù)防流行性感冒知識(shí)的了解情況,印制了若干份有10道題的問(wèn)卷(每題1分)到各班做問(wèn)卷調(diào)查.高一A、B兩個(gè)班各被隨機(jī)抽取5名學(xué)生進(jìn)行問(wèn)卷調(diào)查,A班5名學(xué)生得分(單位:分)為:4,8,9,9,10;B班5名學(xué)生得分(單位:分)為:6,7,8,9,10.
(1)請(qǐng)你估計(jì)A、B兩個(gè)班中哪個(gè)班的問(wèn)卷得分要穩(wěn)定一些;
(Ⅱ)如果把B班5名學(xué)生的得分看成一個(gè)總體,并用簡(jiǎn)單隨機(jī)抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值小于1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=90°,PA⊥面ABCD,若PA=AB=BC=$\frac{1}{2}$AD.
(1)求證:CD⊥平面PAC;
(2)側(cè)棱PA上中點(diǎn)E,求證:BE∥平面PCD;
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案