己知拋物線方程為),焦點(diǎn)為是坐標(biāo)原點(diǎn),是拋物線上的一點(diǎn),軸正方向的夾角為60°,若的面積為,則的值為(    )

A.2                B.            C.2或         D.2或

 

【答案】

A

【解析】

試題分析:拋物線的焦點(diǎn),準(zhǔn)線,令A(yù)的坐標(biāo)為(a,b)則

,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061909431942165242/SYS201306190943345935737477_DA.files/image005.png">,所以由得,,解得,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061909431942165242/SYS201306190943345935737477_DA.files/image010.png">,,所以

,解得。故選A。

考點(diǎn):拋物線的性質(zhì)

點(diǎn)評(píng):關(guān)于拋物線的題目,特別是涉及到線段長(zhǎng)度的題目,一般都要利用到拋物線的特點(diǎn):拋物線上的點(diǎn)到焦點(diǎn)的距離等于它到準(zhǔn)線的距離。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知點(diǎn)F為拋物線C:y2=x的焦點(diǎn),斜率為1的直線l交拋物線于不同兩點(diǎn)P,Q.以F為圓心,以FP,F(xiàn)Q為半徑作圓,分別交x軸負(fù)半軸于M,N,直線PM,QN交于點(diǎn)T.
(I)判斷直線PM與拋物線C的位置關(guān)系,并說(shuō)明理由;
(II)連接FT,F(xiàn)Q,F(xiàn)P,記S1=S△PFT,S2=S△QFT,S3=S△PQT設(shè)直線l在y軸上的截距為m,當(dāng)m何值時(shí),
S1S2S3
取得最小值,并求出取到最小值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知拋物線的參數(shù)方程為
x=2pt2
y=2pt
(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過(guò)拋物線上一點(diǎn)M作l的垂線,垂足為E,若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知拋物線的參數(shù)方程為為參數(shù)),其中,焦點(diǎn)為,準(zhǔn)線為,過(guò)拋物線上一點(diǎn)作的垂線,垂足為,若,點(diǎn)的橫坐標(biāo)是3,則   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省寧波市高三(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

己知點(diǎn)F為拋物線C:y2=x的焦點(diǎn),斜率為1的直線l交拋物線于不同兩點(diǎn)P,Q.以F為圓心,以FP,F(xiàn)Q為半徑作圓,分別交x軸負(fù)半軸于M,N,直線PM,QN交于點(diǎn)T.
(I)判斷直線PM與拋物線C的位置關(guān)系,并說(shuō)明理由;
(II)連接FT,F(xiàn)Q,F(xiàn)P,記S1=S△PFT,S2=S△QFT,S3=S△PQT設(shè)直線l在y軸上的截距為m,當(dāng)m何值時(shí),取得最小值,并求出取到最小值時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案