已知:2cosα-sinα=0,則=   
【答案】分析:由條件利用同角三角函數(shù)的基本關系求出tanα=2,再利用兩角差的正切公式求得的值.
解答:解:∵2cosα-sinα=0,∴tanα=2,∴===
故答案為:
點評:本題主要考查同角三角函數(shù)的基本關系,兩角差的正切公式的應用,求出tanα=2,是解題的突破口,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知a+b=5,c=
7
,且cos 2C+2cos(A+B)=-
3
2

(1)求角C的大;
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)寫出與
π
4
終邊相同角的集合S,并且把S中適合不等式-2π≤β<4π的元素β寫出來.
(2)已知tanα=-
1
3
,計算
sinα+2cosα
5cosα-sinα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=a=(
2
cosα,
2
sinα)
,
OB
=b=(2cosβ,2sinβ),其中O為坐標原點,且
π
6
≤α<
π
2
<β≤
6

(1)若
a
⊥(
b
-
a
),求β-α的值;
(2)當
a
•(
b
-
a
)取最小值時,求△OAB的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義非零向量
OM
=(a,b)
的“相伴函數(shù)”為f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
稱為函數(shù)f(x)=asinx+bcosx的“相伴向量”(其中O為坐標原點).記平面內(nèi)所有向量的“相伴函數(shù)”構成的集合為S.
(1)設h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求證:h(x)∈S;
(2)求(1)中函數(shù)h(x)的“相伴向量”模的取值范圍;
(3)已知點M(a,b)(b≠0)滿足:(a-
3
)2+(b-1)2=1
上一點,向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當點M運動時,求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濰坊一模)已知函數(shù)f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
(ω>0,0<φ<
π
2
)
.其圖象的兩個相鄰對稱中心的距離為
π
2
,且過點(
π
3
,1)

(I)函數(shù)f(x)的達式;
(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對邊,a=
5
,S△ABC=2
5
,角C為銳角.且滿f(
C
2
-
π
12
)=
7
6
,求c的值.

查看答案和解析>>

同步練習冊答案