數(shù)列{an},a1=1,an+an+1=2n,則數(shù)列{an+1-an}的前10項(xiàng)和T10=( )
A.0
B.5
C.10
D.20
【答案】分析:由a1=1,an+an+1=2n求出數(shù)列{an}的前十項(xiàng),然后再求數(shù)列{an+1-an}的前10項(xiàng)和T10
解答:解:∵a1=1,an+an+1=2n,
∴a2=1,a3=3,a4=3,a5=5,a6=5,a7=7,a8=7,a9=9,a10=9,
∴數(shù)列{an+1-an}的前10項(xiàng)和T10=a2-a1+a3-a2+…a10-a9=a9+a2=10,
故選C.
點(diǎn)評(píng):本題主要考查數(shù)列求和的知識(shí)點(diǎn),解答本題的關(guān)鍵是求出數(shù)列{an}的前十項(xiàng),本題難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實(shí)數(shù),且c≠0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)a=
1
2
,c=
1
2
,bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+3
3x
(x>0)
,數(shù)列{an}滿足a1=1,an=f(
1
an-1
)(n∈N*,且n≥2)

(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對(duì)n∈N*恒成立,求實(shí)數(shù)t的取值范圍;
(III)在數(shù)列{an}中是否存在這樣一些項(xiàng):an1,an2,an3,…,ank,…(1=n1n2n3<…<nk<…,k∈N*),這些項(xiàng)能夠構(gòu)成以a1為首項(xiàng),q(0<q<5,q∈N*)為公比的等比數(shù)列{ank},k∈N*.若存在,寫出nk關(guān)于k的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an滿足a1=1,n≥2時(shí),
an
an-1
=
2-3an
an-1+2

(1)求證:數(shù)列{
1
an
}
為等差數(shù)列;
(2)求{
3n
an
}
的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山一模)數(shù)列{an}滿足a1=
1
2
,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明Sn<n-ln(
n+2
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,a2=2,且an+1=
an+an+2
2
(n∈N*)

(1)求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=
1
an
+
an+1
(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案