已知橢圓x2+=1(b∈(0,1))的左焦點(diǎn)為F,左右頂點(diǎn)分別為A、C,上頂點(diǎn)為B,過(guò)F,B,C三點(diǎn)作圓P,其中圓心P的坐標(biāo)為(m,n)
(1)當(dāng)m+n>0時(shí),橢圓的離心率的取值范圍
(2)直線AB能否和圓P相切?證明你的結(jié)論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044
已知橢圓x2+=1及兩點(diǎn)P(-2,0)、Q(0,1),過(guò)點(diǎn)P作斜率為k的直線交橢圓于不同的兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為M,連結(jié)QM.
(1)k為何值時(shí),直線QM與橢圓的準(zhǔn)線平行?
(2)試判斷直線QM能否過(guò)橢圓的頂點(diǎn)?若能,求出相應(yīng)的k值,若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:044
已知橢圓D:=1與圓M:x2+(y-m)2=9(m∈R),雙曲線G與橢圓D有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切.當(dāng)m=5時(shí),求雙曲線G的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省廣州市2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意a∈[3,4],函數(shù)f(x)在R上都有三個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.
已知橢圓x2+=1的左、右兩個(gè)頂點(diǎn)分別為A、B.曲線C是以A、B兩點(diǎn)為頂點(diǎn),離心率為的雙曲線,設(shè)點(diǎn)P在第一象限且在曲線C上,直線AP與橢圓相交于另一點(diǎn)T.
(1)求曲線C的方程;
(2)設(shè)點(diǎn)P、T的橫坐標(biāo)分別為x1,x2,證明:x1·x2=1;
(3)設(shè)△TAB與△POB(其中O為坐標(biāo)原點(diǎn))的面積分別為S1與S2,且,求S-S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓x2+=1的左、右兩個(gè)頂點(diǎn)分別為A,B.雙曲線C的方程為x2-=1. 設(shè)點(diǎn)P在第一象限且在雙曲線C上,直線AP與橢圓相交于另一點(diǎn)T.
(Ⅰ)設(shè)P, T兩點(diǎn)的橫坐標(biāo)分別為x1,x2,證明x1· x2=1;
(Ⅱ)設(shè)△TAB與△POB(其中O為坐標(biāo)原點(diǎn))的面積分別為S1與S2 ,且·≤15,求S-S的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com