已知曲線滿足下列條件:
①過原點;②在處導(dǎo)數(shù)為-1;③在處切線方程為.
(1) 求實數(shù)的值;
(2)求函數(shù)的極值.
(1)
(2) 極大值1,極小值
(1)根據(jù)條件有
     解得
(2)由(Ⅰ),

的關(guān)系如表所示


-1




+
0

0
+


極大值1

極小值

 
因此函數(shù)處有極大值1,在處有極小值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,證明:當(dāng)時,;
(2)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2014·成都模擬)已知函數(shù)f(x)=x2++alnx(x>0).
(1)若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍.
(2)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1,x2總有不等式[f(x1)+f(x2)]≥f成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函數(shù)”.試證當(dāng)a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)有極大值和極小值,則的取值范圍為(  )
A.-12B.-36
C.-1或2D.-3或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3+mx2+(m+6)x+1既存在極大值又存在極小值,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2013·浙江高考]已知函數(shù)y=f(x)的圖象是下列四個圖象之一,且其導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則該函數(shù)的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知A,b是實數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個極值點.
(1)求A和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3ax2+3x+1.
(1)設(shè)a=2,求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案