精英家教網 > 高中數學 > 題目詳情
設A、B、C是△ABC的三個內角,且sin2B+sin2C=sin2A+sinBsinC,則2sinBcosC-sin (B-C)的值為( )
A.
B.
C.
D.
【答案】分析:利用正弦定理和余弦定理把sin2B+sin2C=sin2A+sinBsinC化簡可得cosA的值,根據cosA大于0利用同角三角函數間的基本關系得到sinA的值,然后利用誘導公式把所求的式子化簡,將sinA的值代入即可求出.
解答:解:因為==
所以sin2B+sin2C=sin2A+sinBsinC可變?yōu)椋篵2+c2=a2+bc;
則cosA==>0,所以sinA==
所以2sinBcosC-sin(B-C)=2sinBcosC-(sinBcosC-cosBsinC)
=sinBcosC+cosBsinC=sin(B+C)=sin(π-A)=sinA=
故選D.
點評:此題考查學生靈活運用正弦、余弦定理化簡求值,靈活運用兩角和與差的正弦函數公式及同角三角函數間的基本關系化簡求值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設A,B,C是半徑為1的圓上三點,若AB=
3
,則
AB
AC
的最大值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

a
b
,
c
是互不共線的非零向量,給出下列命題:①(
a
b
)2≤|
a
|2|
b
|2
;②(
a
b
)2=
a
2
b
2
;③若|3
a
+2
b
|=|3
a
-2
b
|
,則
a
b
垂直;④在等邊△ABC中,
AB
BC
的夾角為60°,上述命題中正確命題個數為(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•眉山一模)設函數f(x)對其定義域內的任意實數x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數f(x)為上凸函數. 若函數f(x)為上凸函數,則對定義域內任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現有下列命題:
①f(x)=lnx(x>0)是上凸函數;
②二次函數f(x)=ax2+bx+c(a≠0)是上凸函數的充要條件是a>0;
③f(x)是上凸函數,若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•成都一模)如圖,設A、B、C是球O面上的三點,我們把大圓的劣弧
BC
CA
、
AB
在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設
BC
=a,
CA
=b,
AB
=c,a,b.c∈(0,π)
,二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若α=β=γ=
π
2
,則球面三角形ABC的面積為
π
2
;
②若a=b=c=
π
3
,則四面體OABC的側面積為
π
2
;
③圓弧
AB
在點A處的切線l1與圓弧
CA
在點A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認為正確的所有命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•崇明縣一模)設a、b、c是互不相等的正數,則下列不等式中不恒成立的是( 。

查看答案和解析>>

同步練習冊答案