已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)分別是F1,F(xiàn)2,點(diǎn)M(1 ,
3
2
)
在橢圓上,且|MF1|+|MF2|=4.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)l:y=kx+t(k≠0,t>0)與橢圓C:
x2
a2
+
y2
b2
=1
交于A(yíng),B兩點(diǎn),點(diǎn)P滿(mǎn)足
AP
+
BP
=
0
,點(diǎn)Q的坐標(biāo)是(0 ,
3
2
)
,設(shè)直線(xiàn)PQ的斜率是k1,且k1•k=2,求實(shí)數(shù)t的取值范圍.
分析:(Ⅰ)利用點(diǎn)M(1 ,
3
2
)
在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上,且|MF1|+|MF2|=4,可求橢圓的幾何量,從而可得橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)聯(lián)立方程組,利用韋達(dá)定理,及向量知識(shí),結(jié)合k1•k=2,建立不等式,即可求得實(shí)數(shù)t的取值范圍.
解答:解:(Ⅰ)因?yàn)辄c(diǎn)M(1 ,
3
2
)
在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上,且|MF1|+|MF2|=4,
所以
1
a2
+
3
4b2
=1
,2a=4.
所以a2=4,b2=1.
所以橢圓C的標(biāo)準(zhǔn)方程是
x2
4
+y2=1
.…..(3分)
(Ⅱ)聯(lián)立方程組
y=kx+t 
x2
4
+y2=1 
消去y,得(1+4k2)x2+8ktx+4(t2-1)=0.
所以△=64k2t2-16(1+4k2)(t2-1)>0,…..(4分)
即1+4k2>t2.①…..(5分)
設(shè)A(x1,y1),B(x2,y2),所以x1+x2=
-8kt
1+4k2
.…..(6分)
因?yàn)?span id="br8y770" class="MathJye">
AP
+
BP
=
0
,所以點(diǎn)P是AB的中點(diǎn),
設(shè)P(xP,yP),所以xp=
-4kt
1+4k2
,yp=kxP+t=
1
1+4k2
.…..(8分)
因?yàn)辄c(diǎn)Q的坐標(biāo)是(0 ,
3
2
)
,直線(xiàn)PQ的斜率是k1,
所以k1=
yP-
3
2
xP
=
2t-3(1+4k2)
-8kt
.…..(10分)
因?yàn)閗1•k=2,所以k•
2t-3(1+4k2)
-8kt
=2

所以1+4k2=6t.②…..(12分)
所以由①,②式,可得  6t>t2且6t>1.
所以1<t<6.
所以實(shí)數(shù)t的取值范圍是1<t<6.…..(14分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查韋達(dá)定理,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線(xiàn)y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿(mǎn)足
DA
DB
,若λ∈[
3
8
1
2
],求直線(xiàn)AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線(xiàn)l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線(xiàn)l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線(xiàn)l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線(xiàn)l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線(xiàn)x=2的垂線(xiàn)AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線(xiàn)l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案