以知F是雙曲線=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為________.
科目:高中數(shù)學 來源:2008年高考數(shù)學模擬創(chuàng)新試題分類匯編(解析幾何) 題型:013
(文)已知F為雙曲線-=1(a,b>0)的右焦點,點P為雙曲線右支上一點,以線段PF為直徑的圓與圓x2+y2=a2的位置關(guān)系是
A.相交
B.相切
C.相離
D.不確定
查看答案和解析>>
科目:高中數(shù)學 來源:山西省忻州一中2010屆高三第三次四校聯(lián)考數(shù)學文科試題 題型:044
曲線C是中心在原點,焦點在x軸上的雙曲線,已知它的一個焦點F的坐標為(2,0),一條漸近線的方程為,過焦點F作直線交曲線C的右支于P、Q兩點,R是弦PQ的中點.
(1)求曲線C的方程;
(2)若在y軸左側(cè)能作出直線l:x=m,使以線段PQ為直徑的圓與直線l相切,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:廣東省廣州市2012屆高三第一次模擬考試數(shù)學文科試題 題型:044
已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對任意a∈[3,4],函數(shù)f(x)在R上都有三個零點,求實數(shù)b的取值范圍.
已知橢圓x2+=1的左、右兩個頂點分別為A、B.曲線C是以A、B兩點為頂點,離心率為的雙曲線,設(shè)點P在第一象限且在曲線C上,直線AP與橢圓相交于另一點T.
(1)求曲線C的方程;
(2)設(shè)點P、T的橫坐標分別為x1,x2,證明:x1·x2=1;
(3)設(shè)△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2,且,求S-S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2010四川理數(shù))(20)(本小題滿分12分)
已知定點A(-1,0),F(2,0),定直線l:x=,不在x軸上的動點P與點F的距離是它到直線l的距離的2倍.設(shè)點P的軌跡為E,過點F的直線交E于B、C兩點,直線AB、AC分別交l于點M、N
(Ⅰ)求E的方程;
(Ⅱ)試判斷以線段MN為直徑的圓是否過點F,并說明理由.【來源:全,品…中&高*考+網(wǎng)】
本小題主要考察直線、軌跡方程、雙曲線等基礎(chǔ)知識,考察平面機襲擊和的思想方法及推理運算能力.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com