已知雙曲線S的中心是原點O,離心率為
5
,拋物線y2=2
5
x的焦點是雙曲線S的一個焦點,直線l:y=kx+1與雙曲線S交于A、B兩個不同點.
(I)求雙曲線S的方程;
(II)當(dāng)以AB為直徑的圓經(jīng)過原點O時,求實數(shù)k的值.
分析:(I)設(shè)出雙曲線S的方程,c為它的半焦距,根據(jù)已知得 c=
5
2
,
c
a
=
5
又b2=c2-a2=1,可以求出a,b,c的數(shù)值.
(II)由題意得(4-k2)x2-2kx-2=0x2-2kx-2=0,當(dāng)△>0且4-k4≠0時,l與雙曲線S有兩個不同交點A,B.解得 -2
2
< k<2
2
且k≠±2
.設(shè)A(x1,y1)B(x2,y2)因為以AB為直徑的圓經(jīng)過原點O,得出
OA
OB
=0
所以x1x2+y1y2=0.由根與系數(shù)的關(guān)系得x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=0解得k=±
2
解答:解:(I)由題意設(shè)雙曲線S的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
且c為它的半焦距,
根據(jù)已知得 c=
5
2
,
c
a
=
5

a=
1
2

∵b2=c2-a2=1,∴b=1
所以雙曲線S的方程為4x2-y2=1.
(II)由題意得
y=kx+1
4x2-y2=1
消去y得(4-k2)x2-2kx-2=0x2-2kx-2=0
當(dāng)△>0且4-k4≠0即4k2+8(4-k2)>0且k≠±2時,
l與雙曲線S有兩個不同交點A,B
-2
2
< k<2
2
且k≠±2

設(shè)A(x1,y1)B(x2,y2
∵以AB為直徑的圓經(jīng)過原點O,∴OA⊥OB,∴
OA
OB
=0

∴x1x2+y1y2=0
x1+x2=
2k
4-k2
,x1x2=
-2
4-k2
,y1=kx1+1,y2=kx2+1
∴x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=0
-2
4-k2
 +k2
-2
4-k2
+k•
2k
4-k2
+1=0

化簡得k2=2
所以k=±
2

經(jīng)檢驗k=±
2
符合條件.
所以當(dāng)以AB為直徑的圓經(jīng)過原點O時,實數(shù)k的值為 ±
2
點評:解決這種求雙曲線的方程問題關(guān)鍵是熟悉雙曲線中a,b,c之間的關(guān)系,解決求直線方程問題關(guān)鍵是把垂直問題轉(zhuǎn)化為向量垂直再結(jié)合者根與系數(shù)的關(guān)系列方程解方程即可,此知識點是高考考查的重點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線S的中心是原點O,離心率為
5
,拋物線y2=2
5
x的焦點是雙曲線S的一個焦點,直線l:y=kx+1與雙曲線S交于A、B兩個不同點.
(I)求雙曲線S的方程;
(II)當(dāng)
OA
OB
時,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線S的中心是原點O,離心率為數(shù)學(xué)公式,拋物線y2=2數(shù)學(xué)公式x的焦點是雙曲線S的一個焦點,直線l:y=kx+1與雙曲線S交于A、B兩個不同點.
(I)求雙曲線S的方程;
(II)當(dāng)以AB為直徑的圓經(jīng)過原點O時,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線S的中心是原點O,離心率為
5
,拋物線y2=2
5
x的焦點是雙曲線S的一個焦點,直線l:y=kx+1與雙曲線S交于A、B兩個不同點.
(I)求雙曲線S的方程;
(II)當(dāng)
OA
OB
時,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年云南省昆明八中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知雙曲線S的中心是原點O,離心率為,拋物線y2=2x的焦點是雙曲線S的一個焦點,直線l:y=kx+1與雙曲線S交于A、B兩個不同點.
(I)求雙曲線S的方程;
(II)當(dāng)時,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案