已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=GD,GB⊥GC,GB=GC=2,PC=4,E是BC的中點(diǎn).
(Ⅰ)求證:PC⊥BG;
(Ⅱ)求異面直線GE與PC所成角的余弦值;
(Ⅲ)若F是PC上一點(diǎn),且DF⊥GC,求的值。
(Ⅰ)證明:因?yàn)镻G⊥平面ABC,
所以PG⊥BC,
又BG⊥CG,
所以BG⊥面PCG,
所以PC⊥BG。
(Ⅱ)解:建立如圖所示的空間直角坐標(biāo)系,各點(diǎn)坐標(biāo)如圖所示,
,
。
(Ⅲ)設(shè),
則點(diǎn),

,,
由DF⊥DC,得
,解得:,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:河南省安陽市2009屆高三年級二模模擬試卷、數(shù)學(xué)試題(理科) 題型:044

已知如圖四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上.

(1)求異面直線PA與CD所成的角的大;

(2)在棱PD上是否存在一點(diǎn)E,使BE⊥平面PCD?;

(3)求二面角A-PD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0108 模擬題 題型:解答題

已知如圖四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE,
(Ⅰ)求異面直線PA與CD所成的角的大。
(Ⅱ)求證:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(I)求異面直線PA與CD所成的角的大;

(II)求證:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(I)求異面直線PA與CD所成的角的大小;

(II)求證:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省菱湖中學(xué)2010-2011學(xué)年高三10月月考數(shù)學(xué)理 題型:解答題

 

已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(1)求異面直線PA與CD所成的角的大小;

    (2)求證:BE⊥平面PCD;

    (3)求二面角A—PD—B的大小.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案