在△ABC中,已知內(nèi)角A=
π
3
,邊BC=2
3
,則△ABC的面積S的最大值為
3
3
3
3
分析:根據(jù)余弦定理結(jié)合三角形的面積公式以及基本不等式,即可求出結(jié)論.
解答:解:由余弦定理,得12=b2+c2-bc.
又S=
1
2
bcsinA=
3
4
bc;
而b2+c2≥2bc⇒bc+12≥2bc⇒bc≤12,(當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立)
所以S=
1
2
bcsinA=
3
4
bc≤3
3

即△ABC的面積S的最大值為:3
3

故答案為:3
3
點(diǎn)評(píng):本題為三角函數(shù)公式的應(yīng)用題目,屬于中檔題.解決本題的關(guān)鍵在于根據(jù)余弦定理以及基本不等公式得到bc≤12.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=9
,sinB=cosAsinC,又△ABC的面積等于6.
(1)求△ABC的三邊之長(zhǎng);
(2)設(shè)P是△ABC(含邊界)內(nèi)一點(diǎn),P到三邊AB、BC、CA的距離分別為d1、d2、d3,求d1+d2+d3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=9
.sinB=cosAsinC,面積S△ABC=6,
(1)求△ABC的三邊的長(zhǎng);
(2)設(shè)P是△ABC(含邊界)內(nèi)的一點(diǎn),P到三邊AC、BC、AB的距離分別是x、y、z.
①寫出x、y、z.所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識(shí)求出x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江蘇模擬)在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面積S△ABC=6.
(Ⅰ)求△ABC的三邊的長(zhǎng);
(Ⅱ)設(shè)P是△ABC(含邊界)內(nèi)一點(diǎn),P到三邊AC,BC,AB的距離分別為x,y和z,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=2
3
,∠BAC=30°.
(Ⅰ)求△ABC的面積;
(Ⅱ)設(shè)M是△ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y)
,求
1
x
+
4
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列命題:

①“x=一1是“x25x60的必要不充分條件;

②在△ABC中,已知;

③在邊長(zhǎng)為1的正方形ABCD內(nèi)隨機(jī)取一點(diǎn)M,MA1的概率為于

④若命題p是::對(duì)任意的,都有sinx1,為:存在,使得sinx > 1.

其中所有真命題的序號(hào)是____

 

查看答案和解析>>

同步練習(xí)冊(cè)答案