已知數(shù)列和滿足:,其中為實數(shù),為正整數(shù).
(Ⅰ)對任意實數(shù),證明數(shù)列不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè),為數(shù)列的前項和.是否存在實數(shù),使得對任意正整數(shù),都有
?若存在,求的取值范圍;若不存在,說明理由.
(Ⅰ)證明:見解析;{an}不是等比數(shù)列.
(Ⅱ)解:因為bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)
=(-1)n·(an-3n+21)=-bn
又b1x-(λ+18),所以當(dāng)λ=-18,bn=0(n∈N+),此時{bn}不是等比數(shù)列:
當(dāng)λ≠-18時,b1=(λ+18) ≠0,由上可知bn≠0,∴(n∈N+).
故當(dāng)λ≠-18時,數(shù)列{bn}是以-(λ+18)為首項,-為公比的等比數(shù)列.
(Ⅲ)當(dāng)a<b3a時,由-b-18=-3a-18,不存在實數(shù)滿足題目要求;
當(dāng)b>3a存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b,且λ的取值范圍是
(-b-18,-3a-18).
【解析】(I) 采用特值法證明.假設(shè)存在一個實數(shù)λ,使{an}是等比數(shù)列,則有a22=a1a3,即矛盾.
所以{an}不是等比數(shù)列.
(II)因為bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)
=(-1)n·(an-3n+21)=-bn
然后再判斷b1是否為零.
(III)由(II)知知bn= -(λ+18)·(-)n-1,于是可得
Sn=-,要使a<Sn<b對任意正整數(shù)n成立,
即轉(zhuǎn)化為a<-(λ+18)·[1-(-)n]〈b(n∈N+)恒成立問題.
(Ⅰ)證明:假設(shè)存在一個實數(shù)λ,使{an}是等比數(shù)列,則有a22=a1a3,即
矛盾.
所以{an}不是等比數(shù)列.
(Ⅱ)解:因為bn+1=(-1)n+1[an+1-3(n-1)+21]=(-1)n+1(an-2n+14)
=(-1)n·(an-3n+21)=-bn
又b1x-(λ+18),所以當(dāng)λ=-18,bn=0(n∈N+),此時{bn}不是等比數(shù)列:
當(dāng)λ≠-18時,b1=(λ+18) ≠0,由上可知bn≠0,∴(n∈N+).
故當(dāng)λ≠-18時,數(shù)列{bn}是以-(λ+18)為首項,-為公比的等比數(shù)列.
(Ⅲ)由(Ⅱ)知,當(dāng)λ=-18,bn=0,Sn=0,不滿足題目要求.
∴λ≠-18,故知bn= -(λ+18)·(-)n-1,于是可得
Sn=-
要使a<Sn<b對任意正整數(shù)n成立,
即a<-(λ+18)·[1-(-)n]〈b(n∈N+)
①
當(dāng)n為正奇數(shù)時,1<f(n)
∴f(n)的最大值為f(1)=,f(n)的最小值為f(2)= ,
于是,由①式得a<-(λ+18),<
當(dāng)a<b3a時,由-b-18=-3a-18,不存在實數(shù)滿足題目要求;
當(dāng)b>3a存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b,且λ的取值范圍是(-b-18,-3a-18).
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
an |
1 |
10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com