已知函數(shù)f(x)=x2-cosx,則f(-0.5),f(0),f(0.6)的大小關(guān)系是( )
A.f(0)<f(-0.5)<f(0.6)
B.f(-0.5)<f(0.6)<f(0)
C.f(0)<f(0.6)<f(-0.5)
D.f(-0.5)<f(0)<f(0.6)
【答案】分析:先求出f(-x)得到f(-x)=f(x),由偶函數(shù)的定義判斷出f(x)為偶函數(shù),求出函數(shù)的導(dǎo)函數(shù),得到f′(x)>0在[0,0.6]上恒成立,得到函數(shù)遞增,比較出三個函數(shù)值的大。
解答:解:∵f(-x)=f(x)
∴f(x)為偶函數(shù)
∴f(-0.5)=f(0.5)
∵f′(x)=2x+sinx,
則函數(shù)f(x)在[0,0.6]上單調(diào)遞增,
所以f(0)<f(0.5)<f(0.6),
即f(0)<f(-0.5)<f(0.6)
故選A
點評:解決函數(shù)的單調(diào)性問題,常利用導(dǎo)數(shù)作為解決的工具:導(dǎo)函數(shù)大于0時函數(shù)遞增;導(dǎo)函數(shù)小于0時函數(shù)遞減.