18.在平面直角坐標(biāo)系xOy中,已知圓心分別為A(14,92),B(17,76),C(19,84)的三個圓半徑相同,直線l過點B,且位于l同側(cè)的三個圓各部分的面積之和等于另一側(cè)三個圓各部分的面積之和,則直線l的斜率的取值集合為{-24}.

分析 由題意可知A,C位于直線l兩側(cè),它們到l的距離相等,列方程解出k即可.

解答 解:設(shè)直線l的方程為y-76=k(x-17),即kx-y-17k+76=0,
由題意可知A,C位于直線l兩側(cè),且A到直線l的距離與C到直線l的距離相等,
∴(14k-92-17k+76)+(19k-84-17k+76)=0,
解得k=-24.
故答案為:{-24}.

點評 本題考查了直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線l:ax-y-a+3=0將關(guān)于x,y的不等式組$\left\{\begin{array}{l}x-2y+5≥0\\ x+y-1≥0\\ x-y+1≤0\end{array}\right.$表示的平面區(qū)域分成面積相等的兩部分,則z=2x-ay的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(Ⅰ)證明:不論t為何值,直線l與曲線C恒有兩個公共點;
(Ⅱ)以α為參數(shù),求直線l與曲線C相交所得弦AB的中點軌跡的參數(shù)方程,并判斷該軌跡的曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C1的方程為x2+y2-8x-10y+16=0.以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ.
(1)把C1的方程化為極坐標(biāo)方程;
(2)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正四面體的棱長為4,則此四面體的外接球的表面積是( 。
A.24πB.18πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)等差數(shù)列{an}的前n項和為Sn,若a5=3,S10=40,則nSn的最小值為-32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.西部大開發(fā)給中國西部帶來了綠色,人與環(huán)境日期和諧,群眾生活條件和各項基礎(chǔ)設(shè)施得到了極大的改善.西部地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2009201020112012201320142015
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$(其中$\overline{x}$,$\overline{y}$為樣本平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在極坐標(biāo)系中,設(shè)直線l過點A($\sqrt{3}$,$\frac{π}{6}$),B(a,0),且直線l與曲線C:ρ=cosθ有且只有一個公共點,求正數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=1+0.8t\\ y=2+0.6t\end{array}\right.$(t為參數(shù)),則它的普通方程是3x-4y+5=0.

查看答案和解析>>

同步練習(xí)冊答案