分析 (1)由2an+1-2an+an+1an=0得$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=\frac{1}{2}$.
(2)裂項求和即可;
(3)bn=$\frac{7{a}_{n}-2}{{a}_{n}}$=7-(n+1)=6-n.當(dāng)n≤6時,Tn=$\frac{n}{2}$(5+6-n)=$\frac{n(11-n)}{2}$;當(dāng)n≥7時,Tn=15+$\frac{n-6}{2}$(1+n-6)=$\frac{n2-11n+60}{2}$.
解答 解:(1)由2an+1-2an+an+1an=0得$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=\frac{1}{2}$.所以數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列.
而b1=f(0)=5,所以$\frac{7({a}_{1}-1)+5}{{a}_{1}-1+1}$=5,7a1-2=5a1,所以a1=1,
$\frac{1}{{a}_{n}}$=1+(n-1)$\frac{1}{2}$,所以an=$\frac{2}{n+1}$.
(2)anan+1=$\frac{2}{n+1}•\frac{2}{n+2}=4(\frac{1}{n+1}-\frac{1}{n+2})$
${s}_{n}=4(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2})$=4($\frac{1}{2}-\frac{1}{n+2}$)=$\frac{2n}{n+2}$.
(3)因為an=$\frac{2}{n+1}$.所以bn=$\frac{7{a}_{n}-2}{{a}_{n}}$=7-(n+1)=6-n.
當(dāng)n≤6時,Tn=$\frac{n}{2}$(5+6-n)=$\frac{n(11-n)}{2}$;
當(dāng)n≥7時,Tn=15+$\frac{n-6}{2}$(1+n-6)=$\frac{n2-11n+60}{2}$.
所以,Tn=$\left\{\begin{array}{l}{\frac{n(11-n)}{2}\\;n≤6}\\{\frac{{n}^{2}-11n+60}{2}\\;\\;n≥7}\end{array}\right.$
點評 本題考查了數(shù)列的遞推式,數(shù)列求和,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-2,1) | B. | (3,2,1) | C. | (-3,2,-1) | D. | (-3,2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+bx-2(b∈R) | B. | f(x)=|x2-3| | C. | f(x)=1-|x-2| | D. | f(x)=x3+x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{3}$ | B. | $\frac{13}{3}$ | C. | 3 | D. | $\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com