點P(x,y)在圓(x-1)2+(y+1)2=4上運動,求
y-4
x-3
的取值范圍.
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:所求式子表示圓C上點P與(3,4)確定直線斜率,求出相切時的斜率,即可確定出范圍.
解答: 解:根據(jù)題意得:k=
y-4
x-3
表示圓C上點P與(3,4)確定直線斜率,
設(shè)此直線的斜率為k,直線方程為y-4=k(x-3),即kx-y-3k+4=0,
當(dāng)直線與圓C相切時,圓心到直線的距離d=r,即
|k+1-3k+4|
1+k2
=2,
解得:k=
21
20

y-4
x-3
的取值范圍是[
21
20
,+∞).
點評:此題考查了圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系,弄清題意是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
x23456
y2.23.85.56.57.0
(1)畫出散點圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4x+2,函數(shù)g(x)=
1
3
f(x),若f(2-x)=f(2+x),求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
mx2-x.
(Ⅰ)若f(x)在x=3處取得極值,求m的值;
(Ⅱ)若f(x)在(0,+∞)內(nèi)單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)的定義域為R,若f(x+2)為偶函數(shù),且f(1)=1,則f(8)+f(9)=(  )
A、-2B、-1C、0D、1

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�