已知函數(shù),在上的減函數(shù).
(Ⅰ)求曲線在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若在上恒成立,求的取值范圍;
(Ⅲ)關(guān)于的方程()有兩個(gè)根(無(wú)理數(shù)e=2.71828),求m的取值范圍.
(Ⅰ);(Ⅱ);(Ⅲ).
解析試題分析:(Ⅰ)求出即得在點(diǎn)(1,f(1))處的切線方程.
(Ⅱ)在上恒成立,則.
利用導(dǎo)數(shù)求出的最大值,再解不等式即可得的取值范圍.
(Ⅲ)方程可化為,即.
令,則問題轉(zhuǎn)化為研究函數(shù)的圖象與x軸交點(diǎn)個(gè)數(shù),而這又可用導(dǎo)數(shù)解決.
試題解析:(Ⅰ)∵,∴, 1分
∴, 2分
∴在點(diǎn)(1, f(1))處的切線方程為,即; 3分
(Ⅱ)∵,∴,
在上單調(diào)遞減,∴在上恒成立, 4分
∴在上恒成立,
5分
在上單調(diào)遞減,∴
∵在上恒成立,
∴只需恒成立, 6分
∴,
∵,∴,
∴; 7分
(Ⅲ)由(Ⅰ)知方程為,
設(shè),則方程根的個(gè)數(shù)即為函數(shù)的圖象與x軸交點(diǎn)個(gè)數(shù) 8分
∵, 9分
當(dāng)時(shí),在上為增函數(shù),
當(dāng)時(shí),
在和上為減函數(shù),
在上為增函數(shù),在上為減函數(shù),
在的最大值為, 11分
又,,
方程有兩根滿足:, 12分
即時(shí),原方程有兩解 &
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè),試問函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. 注:是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),≤恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在點(diǎn)處的切線與圓相切,求的值;
(2)當(dāng)時(shí),函數(shù)的圖像恒在坐標(biāo)軸軸的上方,試求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當(dāng)時(shí),函數(shù)的圖象與軸交于兩點(diǎn),且,又是的導(dǎo)函數(shù).若正常數(shù)滿足條件,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)如果函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn)(是自然對(duì)數(shù)的底數(shù))?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com